Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Nov 27 2017 18:12:57
%S 1,2,10,88,978,12200,163156,2286448,33138874,492657384,7470940300,
%T 115115319376,1797128902132,28364816229008,451870965523368,
%U 7256283996155360,117333885356923274,1908844190372949224,31221135850863938268,513100005743085437328,8468653781083527106012,140314257925457275837488
%N G.f. satisfies: A(x) = (7 + A(x)^4) / (8 - 8*x).
%F G.f. satisfies:
%F (1) A(x) = 1 + Series_Reversion( (1+8*x - (1+x)^4)/(8*(1+x)) ).
%F (2) A(x) = Sum_{n>=0} C(4*n,n)/(3*n+1) * (7 + 8*x*A(x))^(3*n+1) / 8^(4*n+1).
%F (3) A(x) = G(x*A(x)) and G(x) = A(x/G(x)) where G(x) = (7+8*x + G(x)^4)/8 is the g.f. of A120594.
%F a(n) ~ 3^(3*(n-1)/4) * 7^((n-1)/4) / (sqrt(Pi) * n^(3/2) * (3^(3/4)*7^(1/4) - 7/2)^(n - 1/2)). - _Vaclav Kotesovec_, Nov 27 2017
%e G.f.: A(x) = 1 + 2*x + 10*x^2 + 88*x^3 + 978*x^4 + 12200*x^5 +...
%e Compare A(x)^4 to 8*(1-x)*A(x):
%e A(x)^4 = 1 + 8*x + 64*x^2 + 624*x^3 + 7120*x^4 + 89776*x^5 +...
%e 8*(1-x)*A(x) = 8 + 8*x + 64*x^2 + 624*x^3 + 7120*x^4 + 89776*x^5 +...
%t CoefficientList[1 + InverseSeries[Series[(1+8*x - (1+x)^4)/(8*(1+x)), {x, 0, 20}], x], x] (* _Vaclav Kotesovec_, Nov 27 2017 *)
%o (PARI) {a(n)=polcoeff(1 + serreverse((1+8*x - (1+x)^4)/(8*(1+x +x*O(x^n)))), n)}
%o for(n=0, 30, print1(a(n), ", "))
%o (PARI) {a(n)=local(A=[1], Ax=1+2*x); for(i=1, n, A=concat(A, 0); Ax=Ser(A); A[#A]=Vec( ( Ax^4 - 8*(1-x)*Ax )/4 )[#A]); A[n+1]}
%o for(n=0, 30, print1(a(n), ", "))
%Y Cf. A120594, A244627, A244594, A244856, A245043.
%K nonn
%O 0,2
%A _Paul D. Hanna_, Jul 09 2014