login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A244975 (7^n - 2*n - 1)/4. 1
0, 1, 11, 84, 598, 4199, 29409, 205882, 1441196, 10088397, 70618807, 494331680, 3460321794, 24222252595, 169555768205, 1186890377478, 8308232642392, 58157628496793, 407103399477603, 2849723796343276, 19948066574402990, 139636466020820991, 977455262145747001 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

This formula is considered in Theorem 5 of Shum's paper in References: on page 4 reads M(7^m,3) = (7^m - 2*m - 1)/4 for m >= 1, where M(r,s) is the number of the codewords in an optimal CAC(r,s), and CAC(r,s) denotes a conflict-avoiding codes of length r and weight s (see Introduction).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

K. W. Shum, On Conflict-Avoiding Codes of Weight Three and Odd Length, The Fifth International Workshop on Signal Design and Its Applications in Communications, October 10-14, 2011, Guilin, China.

Index entries for linear recurrences with constant coefficients, signature (9,-15,7).

FORMULA

G.f.: x*(1+2*x)/((1-7*x)*(1-x)^2).

a(n) = 9*a(n-1) - 15*a(n-2) + 7*a(n-3). - Robert Israel, Jul 09 2014

MATHEMATICA

Table[(7^n - 2 n - 1)/4, {n, 0, 30}] (* or *)

CoefficientList[Series[x (1 + 2 x)/((1 - 7 x) (1 - x)^2), {x, 0, 30}], x]

PROG

(MAGMA) [(7^n-2*n-1)/4: n in [0..25]];

CROSSREFS

Cf. A111277, A135304.

Sequence in context: A239461 A330966 A026783 * A271558 A295168 A001240

Adjacent sequences:  A244972 A244973 A244974 * A244976 A244977 A244978

KEYWORD

nonn,easy

AUTHOR

Vincenzo Librandi, Jul 09 2014

EXTENSIONS

Edited by Bruno Berselli, Jul 09 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 25 12:38 EDT 2021. Contains 347654 sequences. (Running on oeis4.)