Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Jul 12 2014 22:43:37
%S 2,13,10,17,6,37,12,13,16,27,24,71,16,31,64,43,18,43,26,23,32,29,24,
%T 79,32,53,34,61,92,47,40,33,34,57,36,47,40,53,40,79,44,43,68,91,68,57,
%U 66,61,60,53,58,83,60,91,94,61,82,61,70,101,82,71,68,145,82,67,76,69,100
%N Least number k > n such that k^8 + n^8 is prime.
%C a(n) = n+1 iff n is in A153504.
%H Jens Kruse Andersen, <a href="/A244932/b244932.txt">Table of n, a(n) for n = 1..10000</a>
%e 13^8 + 14^8 = 2291519777 is not prime, 13^8 + 15^8 = 3378621346 is not prime. 13^8 + 16^8 = 5110698017 is prime. Thus a(13) = 16.
%o (Python)
%o import sympy
%o from sympy import isprime
%o def a(n):
%o ..for k in range(n+1,10**4):
%o ....if isprime(k**8+n**8):
%o ......return k
%o n = 1
%o while n < 100:
%o ..print(a(n),end=', ')
%o ..n += 1
%o (PARI) a(n)=for(k=n+1,10^4,if(isprime(k^8+n^8),return(k)))
%o n=1;while(n<100,print1(a(n),", ");n++)
%Y Cf. A158979, A089489, A242553.
%K nonn
%O 1,1
%A _Derek Orr_, Jul 08 2014