login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n such that the digit sum of Fibonacci(n) is equal to the digit sum of Lucas(n).
1

%I #19 Mar 31 2024 12:27:00

%S 1,13,61,73,97,217,349,649,937,1477,1513,1729,2005,2077,2209,3265,

%T 3649,3889,4093,4609,4945,5497,5749,5929,6109,7309,7441,8041,8389,

%U 8821,9925,10525,10669,11605,13201,13345,16021,18529,18649,20293,21481,22573,22729,24169

%N Numbers n such that the digit sum of Fibonacci(n) is equal to the digit sum of Lucas(n).

%C Numbers n such that A004090(n) = A139374(n).

%C Subsequence of A017533.

%C It seems that n is odd. The primes of the sequence are: 13, 61, 73, 97, 349, 937, 3889, 4093, 5749, 7309, 8389, 8821, 21481, 22573, 24169, ...

%C Fibonacci(j) == Lucas(j) (mod 9) iff j == 1 (mod 12), so all a(n) == 1 (mod 12). - _Robert Israel_, Jul 10 2014

%H Vincenzo Librandi, <a href="/A244923/b244923.txt">Table of n, a(n) for n = 1..95</a>

%e 13 is in the sequence because Fibonacci(13) = 233, Lucas(13) = 521 and 2+3+3 = 5+2+1 = 8.

%t lst={}; Table[If[Total[IntegerDigits[LucasL[n]]] == Total[IntegerDigits[Fibonacci[n]]], AppendTo[lst, n]], {n, 0, 25000}]; lst

%t Select[Range[25000],Total[IntegerDigits[Fibonacci[#]]]==Total[IntegerDigits[LucasL[#]]]&] (* _Harvey P. Dale_, Mar 31 2024 *)

%Y Cf. A000032, A000045, A004090, A017533, A139374.

%K nonn,base

%O 1,2

%A _Michel Lagneau_, Jul 08 2014