login
a(n) = a(n-a(n-1)) with initial values 2,3,2.
1

%I #12 Aug 25 2015 17:01:28

%S 2,3,2,3,3,2,3,3,2,3,3,2,3,3,2,3,3,2,3,3,2,3,3,2,3,3,2,3,3,2,3,3,2,3,

%T 3,2,3,3,2,3,3,2,3,3,2,3,3,2,3,3,2,3,3,2,3,3,2,3,3,2,3,3,2,3,3,2,3,3,

%U 2,3,3,2,3,3,2,3

%N a(n) = a(n-a(n-1)) with initial values 2,3,2.

%C After first term, periodic with period {3,2,3}.

%H S. W. Golomb, <a href="/A005185/a005185_1.pdf">Discrete chaos: sequences satisfying "strange" recursions</a>, unpublished manuscript, circa 1990 [cached copy, with permission (annotated)]

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 1).

%F a(n) = A164359(n), n>1. - _R. J. Mathar_, Jul 25 2014

%p f:=proc(n,o,S) option remember; # o = offset, S = init. terms

%p L:=nops(S);

%p if n < 0 then 0

%p elif n <= o+L-1 then S[n-o+1]

%p else f(n-f(n-1,o,S),o,S); fi; end;

%p [seq(f(n,1,[2,3,2]),n=1..100)];

%t Join[{2},LinearRecurrence[{0, 0, 1},{3, 2, 3},75]] (* _Ray Chandler_, Aug 25 2015 *)

%K nonn

%O 1,1

%A _N. J. A. Sloane_, Jul 17 2014