Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Sep 08 2022 08:46:08
%S 1,14,100,472,1691,4988,12744,29160,61149,119482,220220,386464,650455,
%T 1056056,1661648,2543472,3799449,5553510,7960468,11211464,15540019,
%U 21228724,28616600,38107160,50177205,65386386,84387564,107938000,136911407,172310896,215282848
%N Expansion of (1+6*x+16*x^2+8*x^3+x^4)/(1-x)^8.
%H Todd Silvestri, <a href="/A244883/b244883.txt">Table of n, a(n) for n = 0..10000</a>
%H R. P. Stanley, <a href="/A002721/a002721.pdf">Examples of Magic Labelings</a>, Unpublished Notes, 1973 [Cached copy, with permission]
%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (8,-28,56,-70,56,-28,8,-1).
%F a(n) = ((n+1)*(n+2)*(n+3)*(n*(n+4)*(n*(16*n+57)+137)+420))/2520. - _Todd Silvestri_, Nov 16 2014
%t a[n_Integer/;n>=0]:=((n+1) (n+2) (n+3) (n (n+4) (n (16 n+57)+137)+420))/2520 (* _Todd Silvestri_, Nov 16 2014 *)
%t CoefficientList[Series[(1 + 6 x + 16 x^2 + 8 x^3 + x^4) / (1 - x)^8, {x, 0, 100}], x] (* _Vincenzo Librandi_, Nov 16 2014 *)
%t LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{1,14,100,472,1691,4988,12744,29160},40] (* _Harvey P. Dale_, May 11 2020 *)
%o (Magma) [((n+1)*(n+2)*(n+3)*(n*(n+4)*(n*(16*n+57)+137)+420))/2520: n in [0..40]]; // _Vincenzo Librandi_, Nov 16 2014
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_, Jul 08 2014