login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Positive numbers primitively represented by the binary quadratic form (1, 1, -2).
1

%I #13 Oct 31 2016 10:22:00

%S 1,4,7,10,13,16,18,19,22,25,27,28,31,34,37,40,43,45,46,49,52,54,55,58,

%T 61,64,67,70,72,73,76,79,81,82,85,88,91,94,97,99,100,103,106,108,109,

%U 112,115,118,121,124,126,127,130,133,135,136,139,142,145,148,151

%N Positive numbers primitively represented by the binary quadratic form (1, 1, -2).

%C Discriminant = 9.

%H Ray Chandler, <a href="/A244713/b244713.txt">Table of n, a(n) for n = 1..10000</a>

%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)

%F Conjectures from _Colin Barker_, Oct 31 2016: (Start)

%F a(n) = a(n-1)+a(n-11)-a(n-12) for n>12.

%F G.f.: (1 +2*x)*(1 +x +x^2)*(1 +x^3 +x^7) / ((1 -x)^2*(1 +x +x^2 +x^3 +x^4 +x^5 +x^6 +x^7 +x^8 +x^9 +x^10)).

%F (End)

%t Reap[For[n = 1, n < 1000, n++, r = Reduce[x^2 + x y - 2 y^2 == n, {x, y}, Integers]; If[r =!= False, If[AnyTrue[{x, y} /. {ToRules[r /. C[1] -> 0]}, CoprimeQ @@ # &], Sow[n]]]]][[2, 1]] (* _Jean-François Alcover_, Oct 31 2016 *)

%Y Cf. A002476, A007645. A subsequence of A056991 and A242660.

%K nonn

%O 1,2

%A _Peter Luschny_, Jul 04 2014