login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244712
Number of 2n-node unlabeled rooted trees with thinning limbs and root outdegree (branching factor) n.
2
0, 1, 1, 3, 6, 15, 31, 74, 159, 365, 805, 1819, 4041, 9091, 20274, 45474, 101644, 227755, 509559, 1141446, 2555232, 5723626, 12817678, 28713594, 64319189, 144104857, 322867573, 723482538, 1621264326, 3633487621, 8143682973, 18253865341, 40918282628, 91730206467
OFFSET
0,4
COMMENTS
In a rooted tree with thinning limbs the outdegree of a parent node is larger than or equal to the outdegree of any of its child nodes.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..193 (terms 0..70 from Alois P. Heinz)
FORMULA
a(n) = A244657(2n,n).
MAPLE
b:= proc(n, i, h, v) option remember; `if`(n=0,
`if`(v=0, 1, 0), `if`(i<1 or v<1 or n<v, 0,
`if`(n=v, 1, add(binomial(A(i, min(i-1, h))+j-1, j)
*b(n-i*j, i-1, h, v-j), j=0..min(n/i, v)))))
end:
A:= proc(n, k) option remember;
`if`(n<2, n, add(b(n-1$2, j$2), j=1..min(k, n-1)))
end:
a:= n-> b(2*n-1$2, n$2):
seq(a(n), n=0..40);
MATHEMATICA
b[n_, i_, h_, v_] := b[n, i, h, v] = If[n == 0, If[v == 0, 1, 0], If[i<1 || v<1 || n<v, 0, If[n == v, 1, Sum[Binomial[A[i, Min[i-1, h]]+j-1, j] * b[n-i*j, i-1, h, v-j], {j, 0, Min[n/i, v]}]]]];
A[n_, k_] := A[n, k] = If[n<2, n, Sum[b[n-1, n-1, j, j], {j, 1, Min[k, n-1] }]];
a[n_] := b[2n-1, 2n-1, n, n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 26 2017, after Alois P. Heinz *)
CROSSREFS
Cf. A244657.
Sequence in context: A244709 A244710 A244711 * A006961 A374704 A316219
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 04 2014
STATUS
approved