OFFSET
0,4
COMMENTS
In a rooted tree with thinning limbs the outdegree of a parent node is larger than or equal to the outdegree of any of its child nodes.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..193 (terms 0..70 from Alois P. Heinz)
FORMULA
a(n) = A244657(2n,n).
MAPLE
b:= proc(n, i, h, v) option remember; `if`(n=0,
`if`(v=0, 1, 0), `if`(i<1 or v<1 or n<v, 0,
`if`(n=v, 1, add(binomial(A(i, min(i-1, h))+j-1, j)
*b(n-i*j, i-1, h, v-j), j=0..min(n/i, v)))))
end:
A:= proc(n, k) option remember;
`if`(n<2, n, add(b(n-1$2, j$2), j=1..min(k, n-1)))
end:
a:= n-> b(2*n-1$2, n$2):
seq(a(n), n=0..40);
MATHEMATICA
b[n_, i_, h_, v_] := b[n, i, h, v] = If[n == 0, If[v == 0, 1, 0], If[i<1 || v<1 || n<v, 0, If[n == v, 1, Sum[Binomial[A[i, Min[i-1, h]]+j-1, j] * b[n-i*j, i-1, h, v-j], {j, 0, Min[n/i, v]}]]]];
A[n_, k_] := A[n, k] = If[n<2, n, Sum[b[n-1, n-1, j, j], {j, 1, Min[k, n-1] }]];
a[n_] := b[2n-1, 2n-1, n, n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 26 2017, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 04 2014
STATUS
approved