login
Number of length n+4 0..7 arrays with no five consecutive elements with pattern ababa or abbba (with a!=b) and new values 0..7 introduced in 0..7 order
1

%I #4 Jul 04 2014 14:22:57

%S 50,192,823,3877,19807,108745,636642,3946032,25709683,174808033,

%T 1231576387,8930829569,66261447244,500451094399,3831652303294,

%U 29641331551873,231089791940516,1812103169942265,14271203280327465

%N Number of length n+4 0..7 arrays with no five consecutive elements with pattern ababa or abbba (with a!=b) and new values 0..7 introduced in 0..7 order

%C Column 7 of A244702

%H R. H. Hardin, <a href="/A244699/b244699.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 23*a(n-1) -190*a(n-2) +624*a(n-3) -299*a(n-4) -1735*a(n-5) -321*a(n-6) +3257*a(n-7) +7830*a(n-8) +2362*a(n-9) -6411*a(n-10) -12773*a(n-11) -15698*a(n-12) -15096*a(n-13) -18309*a(n-14) -14657*a(n-15) -7203*a(n-16) +1319*a(n-17) +7754*a(n-18) +9212*a(n-19) +11865*a(n-20) +11915*a(n-21) +10867*a(n-22) +8583*a(n-23) +5912*a(n-24) +4520*a(n-25) +2834*a(n-26) +1796*a(n-27) +975*a(n-28) +505*a(n-29) +321*a(n-30) +117*a(n-31) +65*a(n-32) +21*a(n-33) +10*a(n-34) +6*a(n-35) -a(n-36) +a(n-37)

%e Some solutions for n=3

%e ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0

%e ..0....1....1....1....1....0....1....0....1....0....1....1....0....1....1....1

%e ..1....2....1....0....1....0....1....1....0....0....2....2....1....2....1....2

%e ..2....0....1....2....2....1....0....0....2....0....2....3....1....2....2....1

%e ..3....2....2....3....2....2....2....0....3....1....1....4....0....0....0....3

%e ..0....2....2....0....1....2....1....2....1....1....0....2....1....2....3....3

%e ..0....3....2....2....1....3....3....1....0....2....3....0....2....1....2....0

%K nonn

%O 1,1

%A _R. H. Hardin_, Jul 04 2014