login
Number of length n+4 0..6 arrays with no five consecutive elements with pattern ababa or abbba (with a!=b) and new values 0..6 introduced in 0..6 order.
1

%I #6 Apr 18 2023 14:55:55

%S 50,192,823,3876,19771,107995,624776,3787558,23822643,154111782,

%T 1018069938,6829108505,46316803213,316615323825,2176466957877,

%U 15020655481036,103953176630054,720844789379037,5005517246373317

%N Number of length n+4 0..6 arrays with no five consecutive elements with pattern ababa or abbba (with a!=b) and new values 0..6 introduced in 0..6 order.

%C Column 6 of A244702.

%H R. H. Hardin, <a href="/A244698/b244698.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 17*a(n-1) -95*a(n-2) +160*a(n-3) +159*a(n-4) -307*a(n-5) -498*a(n-6) -480*a(n-7) +692*a(n-8) +1026*a(n-9) +917*a(n-10) +1051*a(n-11) +886*a(n-12) +1139*a(n-13) +217*a(n-14) -344*a(n-15) -582*a(n-16) -767*a(n-17) -618*a(n-18) -822*a(n-19) -592*a(n-20) -433*a(n-21) -300*a(n-22) -169*a(n-23) -146*a(n-24) -50*a(n-25) -34*a(n-26) -15*a(n-27) -6*a(n-28) -5*a(n-29) +a(n-30) -a(n-31).

%e Some solutions for n=6

%e ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0

%e ..1....1....1....1....1....1....0....1....1....0....0....1....1....0....1....1

%e ..0....2....2....2....2....1....1....2....2....0....1....2....1....1....2....1

%e ..0....0....3....3....3....1....2....0....3....1....2....0....2....0....3....1

%e ..0....3....2....0....0....2....3....3....2....2....1....2....3....2....1....2

%e ..2....2....2....4....4....2....0....1....1....3....2....3....4....3....3....0

%e ..0....0....4....4....2....3....4....3....3....4....3....3....0....2....0....3

%e ..3....3....4....5....2....3....5....1....0....0....1....2....2....2....1....1

%e ..4....4....0....1....1....0....0....0....0....0....0....3....1....1....3....4

%e ..1....5....3....2....5....1....6....2....3....4....2....3....3....3....3....2

%Y Cf. A244702.

%K nonn

%O 1,1

%A _R. H. Hardin_, Jul 04 2014