Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #42 Dec 23 2024 14:53:43
%S 2,4,4,16,16,16,8,192,240,128,512,36,24,224,96,896
%N a(n) is the number of 2-partitions of the set of primes less than A059756(n) that demonstrate that A059756(n) is prime-partitionable.
%C The sequence comprises the number of all possible partitions {P1,P2} for which each n is prime-partitionable.
%H Christopher Hunt Gribble, <a href="/A244640/a244640.txt">List of 2-partitions</a>
%H W. Holsztynski, R. F. E. Strube, <a href="http://dx.doi.org/10.1016/0012-365X(78)90059-6">Paths and circuits in finite groups</a>, Discr. Math. 22 (1978) 263-272.
%H R. J. Mathar and M. F. Hasler, <a href="https://web.archive.org/web/*/http://list.seqfan.eu/oldermail/seqfan/2014-June/013267.html">Is 52 prime-partitionable?</a>, Seqfan thread (Jun 29 2014)
%H W. T. Trotter, Jr. and Paul Erdős, <a href="https://www.renyi.hu/~p_erdos/1978-49.pdf">When the Cartesian product of directed cycles is Hamiltonian</a>, J. Graph Theory 2 (1978) 137-142 DOI:10.1002/jgt.3190020206.
%e Consider the first prime-partitionable number, A059756(1) = 16.
%e We have P = {2, 3, 5, 7, 11, 13}.
%e a(1) = 2 because the 2-partitions of P for which 16 is prime-partitionable are:
%e P1a = {2, 5, 11}, P2a = {3, 7, 13}
%e P1b = {2, 3, 7, 13}, P2b = {5, 11}
%e as is shown below:
%e n1 n2 p1a p2a p1b p2b
%e 1 + 15 - 3 - 5
%e 2 + 14 2 7 2 -
%e 3 + 13 - 13 3 -
%e 4 + 12 2 3 2 -
%e 5 + 11 5 - - 11
%e 6 + 10 2 - 2 5
%e 7 + 9 - 3 7 -
%e 8 + 8 2 - 2 -
%e 9 + 7 - 7 3 -
%e 10 + 6 2 3 2 -
%e 11 + 5 11 - - 5
%e 12 + 4 2 - 2 -
%e 13 + 3 - 3 13 -
%e 14 + 2 2 - 2 -
%e 15 + 1 5 - 3 -
%p Derived from the program provided by _Richard J. Mathar_ in the second link.
%p ppartabl := proc (n)
%p local i, j, pless, p1, p2, n1, n2, pset1, pset2, alln1n2done, foundp1p2;
%p # construct set of primes < n in pless.
%p pless := {};
%p for i from 2 to n-1 do
%p if isprime(i) then
%p pless := `union`(pless, {i});
%p end if;
%p end do;
%p # loop over all nontrivial (nonempty) subsets of the primes, P1.
%p j := 0;
%p for pset1 in combinat[choose](pless) do
%p if 1 <= nops(pset1) then
%p if pset1 = pset2 then
%p break;
%p end if;
%p # P2 is P \ P1.
%p pset2 := `minus`(pless, pset1);
%p # flag to indicate that for each n1,n2 we found a pair.
%p alln1n2done := true;
%p for n1 to n-1 do
%p n2 := n-n1;
%p # flag that we found a (p1,p2).
%p foundp1p2 := false;
%p for p1 in pset1 do
%p if igcd(n1, p1) <> 1 then
%p foundp1p2 := true;
%p break;
%p end if;
%p for p2 in pset2 do
%p if igcd(n2, p2) <> 1 then
%p foundp1p2 := true;
%p break;
%p end if;
%p end do:
%p if foundp1p2 = true then
%p break;
%p end if;
%p end do:
%p if foundp1p2 = false then
%p alln1n2done := false;
%p break;
%p end if;
%p end do:
%p if alln1n2done = true then
%p j := j+1;
%p if j = 1 then
%p printf("%d\n", n);
%p end if;
%p print(j, pset1, pset2);
%p end if;
%p end if;
%p end do:
%p end proc:
%p L := [16, 22, 34, 36, 46, 56, 64, 66, 70, 76, 78, 86, 88, 92,
%p 94, 96];
%p for i from 1 to 16 do
%p ppartabl(L[i]);
%p end do:
%Y Cf. A059756.
%K nonn
%O 1,1
%A _Christopher Hunt Gribble_, Jul 03 2014