%I #25 Jul 04 2023 11:43:19
%S 3521210,6178458,13220900,15878148,22920590,25577838,32620280,
%T 35277528,42319970,44977218,52019660,54676908,61719350,64376598,
%U 71419040,74076288,81118730,83775978,90818420,93475668,100518110,103175358,110217800,112875048,119917490
%N Initial terms of Erdős-Wood intervals of length 22.
%C By definition of the intervals in A059756, these are numbers that start a sequence of 23 consecutive integers such that none of the 23 integers is coprime to the first and also coprime to the last integer of the interval.
%C Hence each initial term of an Erdős-Wood interval is the initial term of a stapled interval of length A059756(n) + 1 (see definition in A090318). - _Christopher Hunt Gribble_, Dec 02 2014
%H Christopher Hunt Gribble, <a href="/A244620/b244620.txt">Table of n, a(n) for n = 1..1000</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93Woods_number">Erdős-Woods number</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1, 1, -1).
%F a(1) = A059757(2).
%F From _Christopher Hunt Gribble_, Dec 02 2014: (Start)
%F a(1) = A130173(524).
%F a(2*n+1) = 3521210 + 9699690*n.
%F a(2*n+2) = 6178458 + 9699690*n.
%F a(n) = (-4849867 - 2192597*(-1)^n + 9699690*n)/2.
%F a(n) = a(n-1) + a(n-2) - a(n-3).
%F G.f.: (3521232*x^2+2657248*x+3521210) / ((x-1)^2*(x+1)). (End)
%e 3521210 = 2*5*7*11*17*269 and 3521210+22 = 3521232 = 2^4 * 3^4 * 11 * 13 * 19, and all numbers in [3521210,3521232] have at least one prime factor in {2, 3, 5, 7, 11, 13, 17, 19, 269}. Therefore 3521210 is in the list.
%p isEWood := proc(n,ewlength)
%p local nend,fsn,fsne,fsall,fsk ;
%p nend := n+ewlength ;
%p fsn := numtheory[factorset](n) ;
%p fsne := numtheory[factorset](nend) ;
%p fsall := fsn union fsne ;
%p for k from n to nend do
%p fsk := numtheory[factorset](k) ;
%p if fsk intersect fsall = {} then
%p return false;
%p end if;
%p end do:
%p return true;
%p end proc:
%p for n from 2 do
%p if isEWood(n,22) then
%p print(n) ;
%p end if;
%p end do:
%Y Cf. A059757, A194585, A090318, A130173.
%K nonn
%O 1,1
%A _R. J. Mathar_, Jul 02 2014
%E More terms from _Christopher Hunt Gribble_, Dec 03 2014