login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: Sum_{n>=0} (4 + x^n)^n * x^n / (1-x)^(n+1).
5

%I #13 Jul 02 2014 08:29:21

%S 1,5,26,127,636,3153,15727,78406,391494,1955563,9772721,48847892,

%T 244196337,1220857221,6103941997,30518746918,152591088797,

%U 762948154799,3814720881833,19073550187976,95367603900506,476837621600990,2384187034951204,11920932287085421,59604653684027019

%N G.f.: Sum_{n>=0} (4 + x^n)^n * x^n / (1-x)^(n+1).

%C What is limit ( a(n) - 5^n )^(1/n) ? (Value is near 2.5659 at n=3000.)

%C Limit is equal to (1+sqrt(17))/2. - _Vaclav Kotesovec_, Jul 02 2014

%H Vaclav Kotesovec, <a href="/A244617/b244617.txt">Table of n, a(n) for n = 0..500</a>

%F G.f.: Sum_{n>=0} x^(n*(n+1)) / (1-x - 4*x^(n+1))^(n+1).

%F G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k) * (4 + x^k)^k.

%F G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k) * (1 + 4*x^k)^(n-k) * x^(k^2).

%F a(n)-5^n ~ n/17 * ((1+sqrt(17))/2)^n. - _Vaclav Kotesovec_, Jul 02 2014

%e G.f.: A(x) = 1 + 5*x + 26*x^2 + 127*x^3 + 636*x^4 + 3153*x^5 + 15727*x^6 +...

%e where we have the series identity:

%e A(x) = 1/(1-x) + (4+x)*x/(1-x)^2 + (4+x^2)^2*x^2/(1-x)^3 + (4+x^3)^3*x^3/(1-x)^4 + (4+x^4)^4*x^4/(1-x)^5 +...+ (4 + x^n)^n * x^n / (1-x)^(n+1) +...

%e A(x) = 1/(1-5*x) + x^2/(1-x-4*x^2)^2 + x^6/(1-x-4*x^3)^3 + x^12/(1-x-4*x^4)^4 + x^20/(1-x-4*x^5)^5 + x^30/(1-x-4*x^6)^6 +...+ x^(n*(n+1)) / (1-x - 4*x^(n+1))^(n+1) +...

%e as well as the binomial identity:

%e A(x) = 1 + x*(1 + (4+x)) + x^2*(1 + 2*(4+x) + (4+x^2)^2) + x^3*(1 + 3*(4+x) + 3*(4+x^2)^2 + (4+x^3)^3) + x^4*(1 + 4*(4+x) + 6*(4+x^2)^2 + 4*(4+x^3)^3 + (4+x^4)^4) + x^5*(1 + 5*(4+x) + 10*(4+x^2)^2 + 10*(4+x^3)^3 + 5*(4+x^4)^4 + (4+x^5)^5) +...+ x^n * Sum_{k=0..n} binomial(n,k) * (4+x^k)^k +...

%e A(x) = 1 + x*(5 + x) + x^2*(5^2 + 2*(1+4*x)*x + x^4) + x^3*(5^3 + 3*(1+4*x)^2*x + 3*(1+4*x^2)*x^4 + x^9) + x^4*(5^4 + 4*(1+4*x)^3*x + 6*(1+4*x^2)^2*x^4 + 4*(1+4*x^3)*x^9 + x^16) + x^5*(5^5 + 5*(1+4*x)^4*x + 10*(1+4*x^2)^3*x^4 + 10*(1+4*x^3)^2*x^9 + 5*(1+4*x^4)*x^16 + x^25) +...+ x^n * Sum_{k=0..n} binomial(n,k) * (1+4*x^k)^(n-k) * x^(k^2) +...

%t Table[SeriesCoefficient[Sum[x^(j*(j+1))/(1-x-4*x^(j+1))^(j+1),{j,0,n}],{x,0,n}],{n,0,25}] (* _Vaclav Kotesovec_, Jul 02 2014 *)

%o (PARI) {a(n)=local(A); A=sum(m=0, n, (4 + x^m)^m * x^m / (1-x +x*O(x^n) )^(m+1) ); polcoeff(A, n)}

%o for(n=0, 40, print1(a(n), ", "))

%o (PARI) {a(n)=local(A); A=sum(m=0, sqrtint(n+1), x^(m*(m+1)) / (1-x - 4*x^(m+1) +x*O(x^n) )^(m+1) ); polcoeff(A, n)}

%o for(n=0, 40, print1(a(n), ", "))

%o (PARI) {a(n)=polcoeff(sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)*(4+x^k)^k) +x*O(x^n)), n)}

%o for(n=0, 40, print1(a(n), ", "))

%o (PARI) {a(n)=polcoeff(sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)*(1+4*x^k)^(m-k)*x^(k^2)) +x*O(x^n)), n)}

%o for(n=0, 40, print1(a(n), ", "))

%Y Cf. A243988, A244615, A244616, A244618, A243919.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Jul 02 2014