login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of unlabeled rooted trees with n nodes and maximal outdegree (branching factor) 8.
2

%I #8 Feb 09 2015 11:03:16

%S 1,2,6,17,50,143,416,1199,3473,10042,29089,84259,244316,708679,

%T 2057087,5974077,17359390,50467157,146789962,427148444,1243513350,

%U 3621591235,10551595959,30753712080,89666493709,261522175986,763002239120,2226771020793,6500575182332

%N Number of unlabeled rooted trees with n nodes and maximal outdegree (branching factor) 8.

%H Alois P. Heinz, <a href="/A244404/b244404.txt">Table of n, a(n) for n = 9..750</a>

%p b:= proc(n, i, t, k) option remember; `if`(n=0, 1,

%p `if`(i<1, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)*

%p b(n-i*j, i-1, t-j, k), j=0..min(t, n/i))))

%p end:

%p a:= n-> b(n-1$2, 8$2) -`if`(k=0, 0, b(n-1$2, 7$2)):

%p seq(a(n), n=9..40);

%t b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[b[i - 1, i - 1, k, k] + j - 1, j]* b[n - i*j, i - 1, t - j, k], {j, 0, Min[t, n/i]}]] // FullSimplify] ; a[n_] := b[n - 1, n - 1, 8, 8] - If[n == 0, 0, b[n - 1, n - 1, 7, 7]]; Table[a[n], {n, 9, 40}] (* _Jean-François Alcover_, Feb 09 2015, after Maple *)

%Y Column k=8 of A244372.

%K nonn

%O 9,2

%A _Joerg Arndt_ and _Alois P. Heinz_, Jun 27 2014