login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244366
Expansion of c(q) * c(q^5) / 9 in powers of q where c() is a cubic AGM theta function.
0
1, 1, 2, 0, 2, 2, 3, 2, 1, 4, 5, 4, 6, 1, 8, 4, 7, 4, 2, 6, 8, 6, 12, 0, 10, 7, 14, 8, 2, 8, 17, 8, 14, 2, 16, 12, 16, 10, 3, 8, 18, 10, 20, 2, 18, 10, 23, 16, 1, 14, 24, 16, 20, 4, 30, 16, 22, 16, 5, 16, 24, 18, 30, 4, 28, 14, 32, 18, 6, 20, 33, 16, 26, 1
OFFSET
2,3
COMMENTS
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
FORMULA
Expansion of (eta(q^3) * eta(q^15))^3 / (eta(q) * eta(q^5)) in powers of q.
Euler transform of period 15 sequence [ 1, 1, -2, 1, 2, -2, 1, 1, -2, 2, 1, -2, 1, 1, -4, ...].
a(5*n) = a(n) for all n in Z.
Given g.f. A = A0 + A1 + A2 + A3 + A4 is the 5-section, then 0 = A4*A3^2 - A4^2*A2 + A2^2*A1 - A3*A1^2 - 6*A3*A2*A0 + 6*A4*A1*A0.
EXAMPLE
G.f. = q^2 + q^3 + 2*q^4 + 2*q^6 + 2*q^7 + 3*q^8 + 2*q^9 + q^10 + 4*q^11 + 5*q^12 + ...
PROG
(PARI) {a(n) = my(A); if( n<2, 0, n -= 2; A = x * O(x^n); polcoeff( (eta(x^3 + A) * eta(x^15 + A))^3 / (eta(x + A) * eta(x^5 + A)), n))};
(Magma) A := Basis( ModularForms( Gamma0(15), 2), 61); A[3] + A[4];
CROSSREFS
Sequence in context: A159632 A164733 A288311 * A262676 A070101 A022830
KEYWORD
nonn
AUTHOR
Michael Somos, Nov 11 2014
STATUS
approved