Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Jun 26 2014 18:02:02
%S 38,58,66,87,110,205,210,310,410,510,610,710,714,810,910,1010,2010,
%T 3010,4010,5010,6010,7010,8010,9010,10010,20010,30010,40010,50010,
%U 60010,70010,80010,90010,100010,200010,300010,400010,500010,600010,700010,800010,900010
%N Consider a number n with m decimal digits, the prefix p of length m-1 and the suffix s of length m-1. The sequence lists the numbers n such that sigma(n) = sigma(p)*sigma(s) where sigma(n) is the sum of the divisors of n.
%C Property of the sequence :
%C {a(n)} = E1 union E2 where E1 = {38, 58, 66, 87, 205, 714} and E2 = {110, 210, 310, 410, 510, 610, 710, 810, 910, 1010, 2010,...}.
%C E2 = F1 union F2 union... union Fk union... where :
%C F1 = {110, 210,..., 910} with one zero;
%C F2 = {1010, 2010,..., 9010} with two zeros;
%C F3 = {10010, 20010,..., 90010} with three zeros;
%C ......................................................................
%C Fk = {100…0010, 200…0010,..., 900...0010} with k zeros;
%C ......................................................................
%C Hence the proposition :
%C If n is of the form n = a0000...010 with k zeros and a =1,2,..., 9 then sigma(n) = sigma(x)*sigma(y) where x = a0000...01 with k-1 zeros and y = 10.
%e 3010 is in the sequence because sigma(3010) = 6336; sigma(301) = 352 and sigma(10) = 18 => 6336 = 352*18.
%p with(numtheory):
%p for n from 10 to 10000 do:
%p x:=convert(n, base, 10):n1:=nops(x):
%p s1:=sum('x[i]*10^(i-1) ', 'i'=1..n1-1):
%p s2:=(n-irem(n,10))/10:
%p x1:=sigma(s1):x2:=sigma(s2):xn:=sigma(n):
%p if xn = x1*x2
%p then
%p printf(`%d, `, n):
%p else
%p fi:
%p od:
%Y Cf. A000203.
%K nonn,base
%O 1,1
%A _Michel Lagneau_, Jun 25 2014