login
Number of standard Young tableaux with n cells such that the lengths of the first and the last row differ by 9.
2

%I #5 Jun 26 2014 13:02:10

%S 10,55,714,4796,39544,265589,1899137,12448912,84901024,547968340,

%T 3633493460,23423908430,153474667719,991845819899,6480618983179,

%U 42093506667304,275840531014103,1804204772698796,11893232452570720,78437868094585319,521001980260102004

%N Number of standard Young tableaux with n cells such that the lengths of the first and the last row differ by 9.

%C Also the number of ballot sequences of length n such that the multiplicities of the largest and the smallest value differ by 9.

%H Alois P. Heinz, <a href="/A244303/b244303.txt">Table of n, a(n) for n = 11..90</a>

%p h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+

%p add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n) end:

%p g:= proc(n, i, l) local j; `if`(n=0 or i<1, 0, `if`(l<>[] and

%p l[1]-i=9, `if`(irem(n, i, 'j')=0, h([l[], i$j]), 0),

%p add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i)))

%p end:

%p a:= n-> g(n$2, []):

%p seq(a(n), n=11..35);

%Y Column k=9 of A238707.

%K nonn

%O 11,1

%A _Joerg Arndt_ and _Alois P. Heinz_, Jun 25 2014