login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of binary arrangements of total n 1's, without adjacent 1's on n X n array connected nw-se.
1

%I #14 Mar 27 2023 22:37:07

%S 1,1,5,57,1084,29003,999717,42125233,2096106904,120194547233,

%T 7799803041491,564856080384900,45146219773912540,3946445378386791157,

%U 374482268128153003615,38330653031858936914329,4209191997519328986666624,493575737047609363968826907

%N Number of binary arrangements of total n 1's, without adjacent 1's on n X n array connected nw-se.

%H Andrew Howroyd, <a href="/A244288/b244288.txt">Table of n, a(n) for n = 0..200</a>

%H Vaclav Kotesovec, <a href="https://oeis.org/wiki/User:Vaclav_Kotesovec">Non-attacking chess pieces</a>, 6ed, 2013, p.422

%F a(n) ~ n^(2*n)/n! * exp(-3/2).

%o (PARI) P(m,n) = sum(k=0, (m+1)\2, binomial(m-k+1,k)*x^k, O(x*x^n))

%o a(n) = polcoef(P(n,n)*prod(m=1, n-1, P(m,n))^2, n) \\ _Andrew Howroyd_, Mar 27 2023

%Y Cf. A197989, A201540, A201511, A201861, A201513, A244284.

%K nonn

%O 0,3

%A _Vaclav Kotesovec_, Jun 25 2014

%E a(16) from _Vaclav Kotesovec_, Sep 04 2016

%E a(17) from _Vaclav Kotesovec_, Jun 15 2021

%E a(0)=1 prepended by _Andrew Howroyd_, Mar 27 2023