%I #8 Aug 12 2019 06:16:00
%S 2,4,1,4,9,0,1,0,2,3,7,1,7,6,1,6,2,4,1,1
%N Decimal expansion of c = 2.4149..., a random mapping statistics constant such that the asymptotic expectation of the maximum rho length (graph diameter) in a random n-mapping is c*sqrt(n).
%D Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.4.2 Random Mapping Statistics, p. 288.
%D P. Flajolet and A. M. Odlyzko, Random Mapping Statistics, Advances in Cryptology - EUROCRYPT '89, J.-J. Quisquater and J. Vandewalle (eds.), Lecture Notes in Computer Science, Springer Verlag, 1990, pp. 329-354.
%F I(x) = integral_(0..x) (exp(-y)/y)*(1 - exp(-2*(y/(exp(x - y) - 1)))) dy,
%F c = sqrt(Pi/2)*integral_(0..infinity) 1 - exp(Ei(-x) - I(x)) dx, where Ei is the exponential integral function.
%e 2.4149010237176162411...
%p evalf(sqrt(Pi/2)*Int(1 - exp(Ei(-x) - Int((exp(-y)/y)*(1 - exp(-2*(y/(exp(x - y) - 1)))), y=0..x)), x=0..infinity)); # _Vaclav Kotesovec_, Aug 12 2019
%t digits = 20; m0 = 100; dm = 10; I0[x_?NumericQ] := NIntegrate[(Exp[-y]/y)*(1 - Exp[-2*(y/(Exp[x - y] - 1))]), {y, 0, x}, WorkingPrecision -> digits+5]; Clear[f]; f[m_] := f[m] = Sqrt[Pi/2]* NIntegrate[1 - Exp[ExpIntegralEi[-x] - I0[x]], {x, 0, m}, WorkingPrecision -> digits+5]; f[m0]; f[m = m0 + dm]; While[RealDigits[f[m], 10, digits+5] != RealDigits[f[m - dm], 10, digits+5], Print["m = ", m]; m = m + dm]; RealDigits[f[m], 10, digits] // First
%Y Cf. A084945, A244067, A244258.
%K nonn,cons,more
%O 1,1
%A _Jean-François Alcover_, Jun 24 2014