%I #14 Apr 09 2021 11:38:37
%S 1,0,1,0,1,1,0,1,0,1,1,0,1,0,1,0,1,0,1,1,0,1,0,1,1,0,1,0,1,0,1,0,1,1,
%T 0,1,0,1,1,0,1,0,1,0,1,0,1,1,0,1,0,1,1,0,1,0,1,0,1,0,1,1,0,1,0,1,1,0,
%U 1,0,1,0,1,0,1,1,0,1,0,1,1,0,1,0,1,0,1,0,1,1,0,1,0,1,1,0,1,0,1,0,1,0,1,1,0,1,0,1,1,0,1,0,1,0,1,0,1,1,0,1,0,1,1,0,1,0,1,0,1,0,1,1,1
%N Binary complement of Greedy Catalan Base reduced modulo 2: a(n) = 1 - (A014418(n) modulo 2).
%H Antti Karttunen, <a href="/A244220/b244220.txt">Table of n, a(n) for n = 0..4862</a>
%F a(n) = 1 - A244221(n) = 1 - (A014418(n) modulo 2) = 1 - (A244161(n) modulo 2).
%o (Scheme) (define (A244220 n) (- 1 (A244221 n)))
%o (Python)
%o from sympy import catalan
%o def a244160(n):
%o if n==0: return 0
%o i=1
%o while True:
%o if catalan(i)>n: break
%o else: i+=1
%o return i - 1
%o def a(n):
%o if n==0: return 0
%o x=a244160(n)
%o return 10**(x - 1) + a(n - catalan(x))
%o print([1 - a(n)%2 for n in range(101)]) # _Indranil Ghosh_, Jun 08 2017
%Y Binary complement: A244221.
%Y A244226 gives the lengths of runs of identical terms.
%Y Cf. A014418, A244161.
%K nonn
%O 0
%A _Antti Karttunen_, Jun 23 2014