login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Integers n such that for every integer k>0, n*6^k-1 has a divisor in the set { 7, 13, 31, 37, 43 }.
3

%I #41 Jun 13 2017 03:50:43

%S 133946,213410,299144,33845,367256,803676,1214450,1250446,1280460,

%T 1704478,1780150,1792762,1794864,2003070,2004962,2203536,2798489,

%U 3014465,3027709,3041998,3053350,3194549,3326301,4244794

%N Integers n such that for every integer k>0, n*6^k-1 has a divisor in the set { 7, 13, 31, 37, 43 }.

%C For n > 24 a(n) = a(n-24) + 4488211, the first 24 values are in the data.

%C When the number a(n) has 1 or 6 as the last digit, the number a(n)*6^k-1 is always divisible by 5 and always has another divisor in the set { 7, 13, 31, 37, 97 } for every k.

%F For n > 24, a(n) = a(n-24) + 4488211.

%o (PFGW & SCRIPT)

%o SCRIPT

%o DIM k,1

%o DIM n

%o DIMS t

%o OPENFILEOUT myf,res.txt

%o LABEL loop1

%o SET k,k+1

%o SET n,0

%o LABEL loop2

%o SET n,n+1

%o IF n>500 THEN GOTO a

%o IF (k*6^n-1)%7==0 THEN GOTO loop2

%o IF (k*6^n-1)%13==0 THEN GOTO loop2

%o IF (k*6^n-1)%31==0 THEN GOTO loop2

%o IF (k*6^n-1)%37==0 THEN GOTO loop2

%o IF (k*6^n-1)%43==0 THEN GOTO loop2

%o GOTO loop1

%o LABEL a

%o WRITE myf,k

%o PRINT k

%o GOTO loop1

%Y Cf. A076337, A243969, A244070, A244071, A244072, A244073, A244074, A244076.

%K nonn

%O 1,1

%A _Pierre CAMI_, Jun 23 2014