login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of compositions of n in which the minimal multiplicity of parts equals 1.
11

%I #22 Nov 27 2019 07:54:10

%S 1,1,3,6,15,23,53,94,203,404,855,1648,3416,6662,13400,26406,53038,

%T 105306,212051,422162,849267,1696864,3406077,6807024,13642099,

%U 27268122,54576003,109096436,218250874,436243705,872533347,1744312748,3488432736,6974783481

%N Number of compositions of n in which the minimal multiplicity of parts equals 1.

%H Alois P. Heinz and Vaclav Kotesovec, <a href="/A244164/b244164.txt">Table of n, a(n) for n = 1..2000</a> (first 400 terms from Alois P. Heinz)

%H Vaclav Kotesovec, <a href="/A244164/a244164_1.jpg">Graph a(n)/2^n</a>

%F a(n) = 2^(n-1) - A240085(n). - _Gus Wiseman_, Nov 25 2019

%e From _Gus Wiseman_, Nov 25 2019: (Start)

%e The a(1) = 1 through a(5) = 15 compositions:

%e (1) (2) (3) (4) (5)

%e (1,2) (1,3) (1,4)

%e (2,1) (3,1) (2,3)

%e (1,1,2) (3,2)

%e (1,2,1) (4,1)

%e (2,1,1) (1,1,3)

%e (1,2,2)

%e (1,3,1)

%e (2,1,2)

%e (2,2,1)

%e (3,1,1)

%e (1,1,1,2)

%e (1,1,2,1)

%e (1,2,1,1)

%e (2,1,1,1)

%e (End)

%p b:= proc(n, i, p, k) option remember; `if`(n=0, p!, `if`(i<1, 0,

%p add(b(n-i*j, i-1, p+j, k)/j!, j=[0, $max(1, k)..n/i])))

%p end:

%p a:= n-> b(n$2, 0, 1) -b(n$2, 0, 2):

%p seq(a(n), n=1..50);

%t Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Min@@Length/@Split[Sort[#]]==1&]],{n,0,10}] (* _Gus Wiseman_, Nov 25 2019 *)

%Y Column k=1 of A242451.

%Y The complement is counted by A240085.

%Y Cf. A003242, A098504, A114901, A261983, A329740, A329741.

%K nonn

%O 1,3

%A _Alois P. Heinz_, Jun 21 2014