login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the smallest k such that the sum of n consecutive values M(k) + M(k+1) + ... + M(k+n-1) is zero, where M(m) is the Moebius (or Möbius) function (A008683).
1

%I #70 Sep 06 2014 00:42:05

%S 4,1,4,6,8,5,4,10,6,7,5,4,4,8,9,6,8,5,4,6,7,5,4,4,4,9,8,10,6,7,5,4,4,

%T 5,4,14,3,3,1,1,6,10,9,8,8,6,6,8,8,6,6,10,5,4,5,3,4,1,4,4,4,5,3,26,1,

%U 4,24,10,9,8,17,6,16,13,12,15,10,9,8,10,6,7

%N a(n) is the smallest k such that the sum of n consecutive values M(k) + M(k+1) + ... + M(k+n-1) is zero, where M(m) is the Moebius (or Möbius) function (A008683).

%H Michel Lagneau, <a href="/A244097/b244097.txt">Table of n, a(n) for n = 1..1000</a>

%e a(1)= 4 => M(4) = 0;

%e a(2)= 1 => M(1)+ M(2) = 1-1 = 0;

%e a(3)= 4 => M(4)+ M(5)+ M(6) = 0-1+1 = 0;

%e a(4)= 6 => M(6)+ M(7)+ M(8) + M(9) = 1-1+0+0 = 0;

%e a(5)= 8 => M(8)+ M(9)+ M(10)+ M(11)+ M(12) = 0+0+1-1+0 = 0.

%t Table[k=1;While[Sum[MoebiusMu[k+i],{i,0,n-1}]!=0,k++];k,{n,1,100}]

%o (PARI) a(n) = my(k = 1); while(sum(j=k, n+k-1, moebius(j)) != 0, k++); k; \\ _Michel Marcus_, Aug 30 2014

%Y Cf. A008683, A171910.

%K nonn

%O 1,1

%A _Michel Lagneau_, Aug 30 2014