Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Aug 18 2014 08:11:46
%S 23,47,67,263,563,607,647,947,1103,1123,1187,1223,1283,1367,1663,1747,
%T 1783,1831,1867,1907,2287,2683,2879,2903,2963,3019,3307,3923,4007,
%U 4111,4643,5107,5171,5303,5387,5563,5647,5807,6263,6323,6367,6863,7523,7583,7699
%N Primes which are the arithmetic mean of two consecutive primes of the form 4n + 1.
%C All terms must necessarily be primes of the form 4n+3.
%H Jens Kruse Andersen, <a href="/A244092/b244092.txt">Table of n, a(n) for n = 1..10000</a>
%e 23 is in this sequence because (A002144(3) + A002144(4))/2 = (17 + 29)/2 = 23 and 23 is prime.
%t pythagPrimes = Select[4Range[500] + 1, PrimeQ]; len = Length[pythagPrimes]; pythagPrimeMeans = Table[(pythagPrimes[[n]] + pythagPrimes[[n + 1]])/2, {n, len - 1}]; Select[pythagPrimeMeans, PrimeQ] (* _Alonso del Arte_, Jul 12 2014 *)
%o (PARI)
%o p=[]; forstep(n=1, 8000, 4, if(isprime(n), p=concat(p, n))); p;
%o s=[]; for(k=1, #p-1, if(isprime(q=(p[k]+p[k+1])\2), s=concat(s, q))); s \\ _Colin Barker_, Jun 28 2014
%Y Cf. A002144, A002145.
%K nonn
%O 1,1
%A _Juri-Stepan Gerasimov_, Jun 28 2014
%E Several terms corrected or added by _Colin Barker_, Jun 28 2014