Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #35 Dec 02 2024 12:21:43
%S 0,32,128,288,512,800,1152,1568,2048,2592,3200,3872,4608,5408,6272,
%T 7200,8192,9248,10368,11552,12800,14112,15488,16928,18432,20000,21632,
%U 23328,25088,26912,28800,30752,32768,34848,36992,39200,41472,43808,46208,48672,51200
%N a(n) = 32*n^2.
%C Geometric connections of a(n) to the area and perimeter of a square.
%C Area:
%C . half the area of a square with side 8n (cf. A008590);
%C . area of a square with diagonal 8n (cf. A008590);
%C . twice the area of a square with side 4n (cf. A008586);
%C . four times the area of a square with diagonal 4n (cf. A008586);
%C . eight times the area of a square with side 2n (cf. A005843);
%C . sixteen times the area of a square with diagonal 2n (cf. A005843);
%C . thirty two times the area of a square with side n (cf. A001477);
%C . sixty four times the area of a square with diagonal n (cf. A001477).
%C Perimeter:
%C . perimeter of a square with side 8n^2 (cf. A139098);
%C . twice the perimeter of a square with side 4n^2 (cf. A016742);
%C . four times the perimeter of a square with side 2n^2 (cf. A001105);
%C . eight times the perimeter of a square with side n^2 (cf. A000290).
%C Sequence found by reading the line from 0, in the direction 0, 32, ..., in the square spiral whose vertices are the generalized 18-gonal numbers. - _Omar E. Pol_, May 10 2018
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F G.f.: 32*x*(1+x)/(1-x)^3.
%F a(n) = 2 * A016802(n).
%F a(n) = 4 * A139098(n).
%F a(n) = 8 * A016742(n).
%F a(n) = 16 * A001105(n).
%F a(n) = 32 * A000290(n).
%F a(n) = A010021(n) - 2 for n > 0. - _Bruno Berselli_, Jun 24 2014
%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - _Wesley Ivan Hurt_, Nov 19 2021
%F From _Elmo R. Oliveira_, Dec 02 2024: (Start)
%F E.g.f.: 32*x*(1 + x)*exp(x).
%F a(n) = n*A174312(n) = A139098(2*n). (End)
%p A244082:=n->32*n^2; seq(A244082(n), n=0..50);
%t 32 Range[0, 50]^2 (* or *)
%t Table[32 n^2, {n, 0, 50}] (* or *)
%t CoefficientList[Series[32 x (1 + x)/(1 - x)^3, {x, 0, 30}], x]
%o (Magma) [32*n^2 : n in [0..50]];
%o (PARI) a(n)=32*n^2 \\ _Charles R Greathouse IV_, Jun 17 2017
%Y Pentasection of A077221, A181900.
%Y Cf. A000290, A001105, A010021, A016742, A016802, A139098.
%Y Cf. A001477, A005843, A008586, A008590, A139098, A174312.
%K nonn,easy
%O 0,2
%A _Wesley Ivan Hurt_, Jun 19 2014