login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Pseudoprimes to base 3 that are not squarefree.
8

%I #16 Jun 29 2014 10:57:33

%S 121,3751,4961,7381,11011,29161,32791,142901,228811,239701,341341,

%T 551881,566401,595441,671671,784201,856801,1016521,1237951,1335961,

%U 1433971,1804231

%N Pseudoprimes to base 3 that are not squarefree.

%C Must be divisible by the square of a Mirimanoff prime, A014127. - _Charles R Greathouse IV_, Jun 21 2014

%H Felix Fröhlich and Charles R Greathouse IV, <a href="/A244065/b244065.txt">Table of n, a(n) for n = 1..10000</a> (first 196 terms from Fröhlich)

%o (PARI) for(n=2, 10^9, if(!isprime(n) && Mod(3, n)^(n-1)==1 && !issquarefree(n), print1(n, ", ")))

%o (PARI) list(lim)=my(M=[11,1006003],v=List(),p2);for(i=1,#M,p2=M[i]^2;forstep(n=p2,lim,p2,if(Mod(3,n)^(n-1)==1,listput(v,n))));Set(v) \\ Good for lim <= 9.4 * 10^29; _Charles R Greathouse IV_, Jun 21 2014

%Y Cf. A005935, A158358, A014127.

%K nonn

%O 1,1

%A _Felix Fröhlich_, Jun 19 2014