login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of all proper divisors of all positive integers <= n.
16

%I #75 Nov 27 2023 03:04:18

%S 0,0,0,2,2,7,7,13,16,23,23,38,38,47,55,69,69,89,89,110,120,133,133,

%T 168,173,188,200,227,227,268,268,298,312,331,343,397,397,418,434,483,

%U 483,536,536,575,607,632,632,707,714,756,776,821,821,886,902

%N Sum of all proper divisors of all positive integers <= n.

%C The proper divisors of n are all divisors except 1 and n itself. Therefore noncomposite numbers have no proper divisors.

%C For the sum of all aliquot divisors of all positive integers <= n see A153485.

%C For the sum all divisors of all positive integers <= n see A024916.

%C a(n) = a(n - 1) if and only if n is prime.

%C For n >= 3 a(n) equals the area of an arrowhead-shaped polygon formed by two zig-zag paths and the Dyck path described in the n-th row of A237593 as shown in the Links section. Note that there is a similar diagram of A153485(n) in A153485. - _Omar E. Pol_, Jun 14 2022

%H Paolo Xausa, <a href="/A244049/b244049.txt">Table of n, a(n) for n = 1..10000</a>

%H Omar E. Pol, <a href="/A244049/a244049.jpg">Illustration of initial terms with arrowhead-shaped polygons</a>.

%F a(n) = A024916(n) - A034856(n).

%F a(n) = A153485(n) - n + 1.

%F G.f.: (1/(1 - x))*Sum_{k>=2} k*x^(2*k)/(1 - x^k). - _Ilya Gutkovskiy_, Jan 22 2017

%F a(n) = A161680(n-1) - A004125(n). - _Omar E. Pol_, Mar 25 2021

%F a(n) = A000290(n) - A034856(n) - A004125(n). - _Omar E. Pol_, Mar 26 2021

%F a(n) = c * n^2 + O(n*log(n)), where c = Pi^2/12 - 1/2 = 0.322467... . - _Amiram Eldar_, Nov 27 2023

%e a(4) = 2 because the only proper divisor of 4 is 2 and the previous n contributed no proper divisors to the sum.

%e a(5) = 2 because 5 is prime and contributes no proper divisors to the sum.

%e a(6) = 7 because the proper divisors of 6 are 2 and 3, which add up to 5, and a(5) + 5 = 2 + 5 = 7.

%t propDivsRunSum[1] := 0; propDivsRunSum[n_] := propDivsRunSum[n] = propDivsRunSum[n - 1] + (Plus@@Divisors[n]) - (n + 1); Table[propDivsRunSum[n], {n, 60}] (* _Alonso del Arte_, Jun 30 2014 *)

%t Accumulate[Join[{0},Table[Total[Most[Divisors[n]]]-1,{n,2,60}]]] (* _Harvey P. Dale_, Aug 12 2016 *)

%t Accumulate[Join[{0}, Table[DivisorSigma[1, n] - n - 1, {n, 2, 55}]]] (* _Amiram Eldar_, Jun 18 2022 *)

%o (PARI) a(n) = sum(k=2, n, sigma(k)-k-1); \\ _Michel Marcus_, Mar 30 2021

%o (Python)

%o from math import isqrt

%o def A244049(n): return ((-n*(n+3)-(s:=isqrt(n))**2*(s+1) + sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1)))>>1)+1 # _Chai Wah Wu_, Oct 21 2023

%Y Partial sums of A048050.

%Y Cf. A000040, A000203, A000290, A001065, A004125, A008578, A024916, A027750, A034856, A153485, A161680, A237591, A237593, A245092, A262626.

%K nonn,easy

%O 1,4

%A _Omar E. Pol_, Jun 24 2014