login
a(n) = Sum_{d|n} Sum{t|d} moebius(d/t)*binomial(3*t,t)/(3*d^2).
0

%I #10 Dec 05 2017 04:01:36

%S 1,2,4,12,41,176,792,3840,19291,100182,533160,2897544,16020564,

%T 89898944,510914744,2936004072,17036988567,99718480238,588166176660,

%U 3493203829992,20876368407633,125470501764720,757994313694512,4600845871441080,28047225141946116,171662437354159416

%N a(n) = Sum_{d|n} Sum{t|d} moebius(d/t)*binomial(3*t,t)/(3*d^2).

%H M. Isachenkov, I. Kirsch, V. Schomerus, <a href="http://arxiv.org/abs/1403.6857">Chiral Primaries in Strange Metals</a>, arXiv preprint arXiv:1403.6857 [hep-th], 2014. See (3.5).

%p with(numtheory);

%p f:=proc(N) local Na, n, ans;

%p ans:=0;

%p for Na in divisors(N) do

%p for n in divisors(Na) do

%p ans := ans + mobius(Na/n)*binomial(3*n,n)/(3*Na^2); od: od:

%p ans;

%p end;

%p [seq(f(n),n=1..30)];

%t a[n_] := Sum[MoebiusMu[d/t]*Binomial[3*t, t]/(3*d^2), {d, Divisors[n]}, {t, Divisors[d]}];

%t Array[a, 26] (* _Jean-François Alcover_, Dec 05 2017 *)

%K nonn

%O 1,2

%A _N. J. A. Sloane_, Jun 28 2014