login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243961
Decimal expansion of the expectation of the maximum of a size 8 sample from a normal (0,1) distribution.
1
1, 4, 2, 3, 6, 0, 0, 3, 0, 6, 0, 4, 5, 2, 7, 7, 7, 5, 3, 0, 7, 8, 3, 2, 4, 6, 4, 9, 3, 0, 6, 2, 5, 7, 2, 5, 3, 0, 8, 6, 7, 2, 5, 2, 7, 0, 6, 9, 4, 8, 3, 1, 4, 3, 2, 2, 2, 5, 9, 1, 7, 5, 5, 4, 7, 8, 3, 5, 5, 5, 1, 2, 6, 8, 5, 2, 8, 1, 4, 2, 1, 6, 4, 2, 8, 9, 8, 8, 6, 5, 9, 7, 6, 9, 2, 7, 5, 5, 3, 7
OFFSET
1,2
COMMENTS
According to Steven Finch, no exact expression of this moment mu(8) is known, unlike the moments mu(n) for n<8.
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.16 Extreme value constants, p. 365.
FORMULA
integral_(-infinity..infinity) 8*x*F(x)^7*f(x) dx, where f(x) is the normal (0,1) density and F(x) its cumulative distribution.
EXAMPLE
1.423600306045277753078324649306257253...
MATHEMATICA
digits = 100; m0 = 5; dm = 5; f[x_] := 1/ Sqrt[2*Pi]*Exp[-x^2/2]; F[x_] := 1/2*Erf[x/Sqrt[2]] + 1/2; Clear[mu8]; mu8[m_] := mu8[m] = 8*NIntegrate[x*F[x]^7*f[x], {x , -m , m}, WorkingPrecision -> digits+5, MaxRecursion -> 20]; mu8[m0]; mu8[m = m0 + dm]; While[RealDigits[mu8[m]] != RealDigits[mu8[m - dm]], Print["m = ", m]; m = m + dm]; RealDigits[mu8[m], 10, digits] // First
CROSSREFS
Cf. A087197 mu(2), A243446 mu(3), A243448 mu(4), A243453 mu(5), A243523 mu(6), A243524 mu(7).
Sequence in context: A123403 A276957 A275847 * A098317 A371325 A095185
KEYWORD
nonn,cons
AUTHOR
STATUS
approved