login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A243954
E.g.f.: A(x) = x/Series_Reversion(x*G(x)) where G(x) = Sum_{n>=0} n^n*x^n/n!.
2
1, 1, 2, 3, -8, -95, -144, 5299, 51584, -263007, -11283200, -61279229, 2321353728, 49471727617, -217783810048, -25824369466125, -298783278792704, 10591512134358721, 400315590893961216, -536860171776183677, -362306852971970560000, -7292410691309793586719, 227379942363338919903232
OFFSET
0,3
COMMENTS
Compare to: exp(x) = x/Series_Reversion(x*W(x)) where W(x) = Sum_{n>=0} (n+1)^(n-1)*x^n/n!.
LINKS
FORMULA
E.g.f. satisfies: A(x) = G(x/A(x)) such that A(x*G(x)) = G(x) = Sum_{n>=0} n^n*x^n/n!.
E.g.f. A(x) satisfies: [x^n/n!] A(x)^(n+1)/(n+1) = n^n.
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2/2! + 3*x^3/3! - 8*x^4/4! - 95*x^5/5! - 144*x^6/6! +...
where
A(x) = 1 + x/A(x) + 4*(x/A(x))^2/2! + 27*(x/A(x))^3/3! + 256*(x/A(x))^4/4! + 3125*(x/A(x))^5/5! +...+ n^n*(x/A(x))^n/n! +...
If we form a table of coefficients of x^k/k! in A(x)^n, like so:
[1, 1, 2, 3, -8, -95, -144, 5299, 51584, ...];
[1, 2, 6, 18, 32, -150, -1728, -1078, 144384, ...];
[1, 3, 12, 51, 192, 375, -2592, -29841, 12288, ...];
[1, 4, 20, 108, 568, 2500, 5184, -48020, -557056, ...];
[1, 5, 30, 195, 1280, 7845, 38880, 84035, -983040, ...];
[1, 6, 42, 318, 2472, 18750, 129456, 705894, 1572864, ...];
[1, 7, 56, 483, 4312, 38395, 326592, 2485567, 14680064, ...];
[1, 8, 72, 696, 6992, 70920, 704448, 6588344, 54442368, ...];
[1, 9, 90, 963, 10728, 121545, 1368144, 14890995, 150994944, ...]; ...
then the main diagonal equals (k+1)*k^k for k>=0.
PROG
(PARI) {a(n)=n!*polcoeff(x/serreverse(x*sum(m=0, n+1, m^m*x^m/m!)+x^2*O(x^n)), n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Sequence in context: A319218 A358562 A368246 * A005008 A079938 A324006
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jun 20 2014
STATUS
approved