%I #11 Jun 19 2014 11:17:55
%S 0,1,1,2,1,2,2,3,1,2,2,3,3,3,4,2,2,2,3,3,3,4,4,4,4,5,3,3,3,3,3,4,4,4,
%T 4,5,5,5,5,5,6,4,4,4,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,7,5,5,5,5,5,5,5,5,
%U 5,6,6,6,6,6,6,7,7,7,7,7,7,7,8,6,6,6
%N Irregular triangular array of taxicab norms of Gaussian integers in array G generated as at Comments.
%C An array G of Gaussian integers is generated as follows: (row 1) = (0), and for n >=2, row n consists of the numbers x+1 and then i*x, where duplicates are deleted as they occur. Every Gaussian integer occurs exactly once in G. The taxicab norm of a Gaussian integer b+c*i is the taxicab distance (also known as Manhattan distance) from 0 to b+c*i, given by b+c. The norms of numbers in row n are given here in nondecreasing order. Conjecture: the number of numbers in row n is 4n13 for n >= 5.
%H Clark Kimberling, <a href="/A243924/b243924.txt">Table of n, a(n) for n = 1..2000</a>
%e First 6 rows of G:
%e 0
%e 1
%e 2 .. i
%e 3 .. 2i .. i+1 ... 1
%e 4 .. 3i .. 1+2i .. 2 .. i+2 .. 1+i . i
%e 5 .. 4i .. 1+3i .. 3 .. 2+2i . 2+i . 2i . i+3 . 1+2i . 1i . 1i
%e The corresponding taxicab norms follow:
%e 0
%e 1
%e 1 2
%e 1 2 2 3
%e 2 2 1 3 3 3 4
%e 3 3 2 3 2 4 2 4 4 4 5
%e Each row is then arranged in nondecreasing order:
%e 0
%e 1
%e 1 2
%e 1 2 2 3
%e 1 2 2 3 3 3 4
%e 2 2 2 3 3 3 4 4 4 4 5
%t z = 10; g[1] = {0}; f1[x_] := x + 1; f2[x_] := I*x; h[1] = g[1];
%t b[n_] := b[n] = DeleteDuplicates[Union[f1[g[n  1]], f2[g[n  1]]]];
%t h[n_] := h[n] = Union[h[n  1], g[n  1]];
%t g[n_] := g[n] = Complement [b[n], Intersection[b[n], h[n]]]
%t Table[g[n], {n, 1, z}] (* the array G *)
%t v = Table[Abs[Re[g[n]]] + Abs[Im[g[n]]], {n, 1, z}]
%t w = Map[Sort, v] (* A243924, rows *)
%t w1 = Flatten[w] (* A243924, sequence *)
%Y Cf. A233694, A226080.
%K nonn,easy,tabf
%O 1,4
%A _Clark Kimberling_, Jun 17 2014
