%I #8 Aug 13 2014 18:21:14
%S 1,2,2,3,5,8,12,19,30,47,75,118,187,294,465,736,1160,1837,2900,4586,
%T 7253,11465,18132,28669,45344,71715,113416,179394,283737,448838,
%U 709971,1123055
%N Number of numbers in row n of the array at A243851.
%C Decree that (row 1) = (1) and (row 2) = (3,2). For n >= 4, row n consists of numbers in decreasing order generated as follows: x+1 for each x in row n-1 together with 3/x for each x in row n-1, and duplicates are rejected as they occur. Then a(n) = (number of numbers in row n); it appears that this sequence is not linearly recurrent.
%e First 6 rows of the array of rationals:
%e 1/1
%e 3/1 ... 2/1
%e 4/1 ... 3/2
%e 5/1 ... 5/2 ... 3/4
%e 6/1 ... 7/2 ... 7/4 ... 6/5 ... 3/5
%e 7/1 ... 9/2 ... 11/4 .. 11/5 .. 12/7 .. 8/5 .. 6/7 .. 1/2, so that A242453 begins with 1,2,2,3,5,8.
%t z = 12; g[1] = {1}; f1[x_] := x + 1; f2[x_] := 3/x; h[1] = g[1];
%t b[n_] := b[n] = DeleteDuplicates[Union[f1[g[n - 1]], f2[g[n - 1]]]];
%t h[n_] := h[n] = Union[h[n - 1], g[n - 1]];
%t g[n_] := g[n] = Complement [b[n], Intersection[b[n], h[n]]]
%t u = Table[Reverse[g[n]], {n, 1, z}]; v = Flatten[u];
%t Denominator[v] (* A243851 *)
%t Numerator[v] (* A243852 *)
%t Table[Length[g[n]], {n, 1, z}] (* A243853 *)
%Y Cf. A243851, A243852, A243850.
%K nonn,easy
%O 1,2
%A _Clark Kimberling_, Jun 12 2014