login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of Dyck paths of semilength n such that all sixteen consecutive step patterns of length 4 occur at least once.
8

%I #16 Apr 28 2020 07:33:25

%S 38,587,4785,31398,190050,1043248,5324534,25711105,119092876,

%T 533680433,2329450085,9955122396,41824314441,173289259905,

%U 709861015186,2880803895035,11601285215222,46422795985447,184784743066842,732324944072523,2891815190097065,11385122145001833

%N Number of Dyck paths of semilength n such that all sixteen consecutive step patterns of length 4 occur at least once.

%H Alois P. Heinz, <a href="/A243820/b243820.txt">Table of n, a(n) for n = 10..70</a>

%e a(10) = 38: 10101100111101000010, 10101101001111000010, 10101111000011010010, 10101111001101000010, 10101111010000110010, 10101111010011000010, 10110011110100001010, 10110011110101000010, 10110100111100001010, 10110101001111000010, 10111100001101001010, 10111100001101010010, 10111100110100001010, 10111100110101000010, 10111101000011001010, 10111101001100001010, 10111101010000110010, 10111101010011000010, 11001011110000110100, 11001011110100001100, 11001101011110000100, 11001101111000010100, 11001111000010110100, 11001111010000101100, 11001111010110000100, 11001111011000010100, 11010010111100001100, 11010011110000101100, 11010110011110000100, 11010111100001001100, 11010111100001100100, 11010111100100001100, 11010111100110000100, 11011001111000010100, 11011110000101001100, 11011110000110010100, 11011110010100001100, 11011110011000010100. Here 1=Up=(1,1), 0=Down=(1,-1).

%p b:= proc(x, y, t, s) option remember; `if`(y<0 or y>x, 0,

%p `if`(x=0, `if`(s={}, 1, 0), `if`(nops(s)>x, 0, add(

%p b(x-1, y-1+2*j, irem(2*t+j, 8), s minus {2*t+j}), j=0..1))))

%p end:

%p a:= n-> add(b(2*n-3, l[], {$0..15}), l=[[1, 5], [1, 6], [3, 7]]):

%p seq(a(n), n=10..20);

%t b[x_, y_, t_, s_List] := b[x, y, t, s] = If[y < 0 || y > x, 0, If[x == 0, If[s == {}, 1, 0], If[Length[s] > x, 0, Sum[b[x - 1, y - 1 + 2 j, Mod[2 t + j, 8], s ~Complement~ {2 t + j}], {j, 0, 1}]]]];

%t a[n_] := Sum[b[2 n - 3, Sequence @@ l, Range[0, 15]], {l, {{1, 5}, {1, 6}, {3, 7}}}];

%t a /@ Range[10, 31] (* _Jean-François Alcover_, Apr 28 2020, after _Alois P. Heinz_ *)

%Y Cf. A242257, A243882, A243965, A243966.

%K nonn

%O 10,1

%A _Alois P. Heinz_, Jun 11 2014