login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of compositions of n with exactly nine occurrences of the largest part.
2

%I #7 Feb 10 2015 04:01:06

%S 1,0,0,0,0,0,0,0,0,1,10,55,220,715,2002,5005,11440,24310,48621,92388,

%T 168025,294260,498850,822712,1327029,2107325,3324750,5280276,8595025,

%U 14648920,26637015,52076915,108669142,237787000,535084341,1219016810,2782344676

%N Number of compositions of n with exactly nine occurrences of the largest part.

%H Joerg Arndt and Alois P. Heinz, <a href="/A243744/b243744.txt">Table of n, a(n) for n = 9..650</a>

%p b:= proc(n, p, i) option remember; `if`(n=0, p!,

%p `if`(i<1, 0, add(b(n-i*j, p+j, i-1)/j!, j=0..n/i)))

%p end:

%p a:= proc(n) local k; k:=9;

%p add(b(n-i*k, k, i-1)/k!, i=1..n/k)

%p end:

%p seq(a(n), n=9..50);

%t b[n_, p_, i_] := b[n, p, i] = If[n == 0, p!, If[i<1, 0, Sum[b[n-i*j, p+j, i-1]/j!, {j, 0, n/i}]]]; a[n_] := (k=9; Sum[b[n-i*k, k, i-1]/k!, {i, 1, n/k}]); Table[a[n], {n, 9, 50}] (* _Jean-François Alcover_, Feb 10 2015, after Maple *)

%Y Column k=9 of A238341.

%K nonn

%O 9,11

%A _Joerg Arndt_ and _Alois P. Heinz_, Jun 09 2014