|
|
A243723
|
|
Number of length n+2 0..4 arrays with no three unequal elements in a row and no three equal elements in a row and new values 0..4 introduced in 0..4 order.
|
|
1
|
|
|
3, 6, 12, 25, 53, 116, 259, 593, 1382, 3281, 7897, 19252, 47391, 117645, 293934, 738341, 1862341, 4713220, 11959211, 30407929, 77440630, 197470825, 504041249, 1287558068, 3291018759, 8415888789, 21529314366, 55091691997, 141006790829
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
FORMULA
|
Empirical: a(n) = 4*a(n-1) - 13*a(n-3) + 6*a(n-4) + 8*a(n-5).
Empirical g.f.: x*(3 - 6*x - 12*x^2 + 16*x^3 + 13*x^4) / ((1 - 2*x)*(1 - x - x^2)*(1 - x - 4*x^2)). - Colin Barker, Nov 03 2018
|
|
EXAMPLE
|
Some solutions for n=6:
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..1....1....1....0....0....1....1....1....0....1....1....1....0....1....1....1
..1....1....0....1....1....0....0....1....1....1....1....0....1....0....0....1
..2....2....1....0....1....0....0....0....1....0....2....0....0....1....1....0
..1....1....1....1....0....1....2....0....0....1....2....2....1....0....0....0
..2....2....2....0....1....1....2....1....0....1....3....2....0....1....1....2
..2....2....2....1....1....2....0....1....2....0....2....1....1....0....1....2
..0....1....0....1....0....2....0....2....0....1....3....2....0....1....2....1
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|