login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes represented by the indefinite quadratic form x^2 + 13xy - 9y^2.
2

%I #21 May 04 2024 10:29:54

%S 5,59,131,139,241,269,271,359,409,541,569,599,661,701,761,859,881,911,

%T 941,1021,1091,1109,1291,1399,1439,1481,1549,1559,1579,1609,1619,1931,

%U 1999,2011,2029,2089,2099,2111,2141,2251,2399,2459,2521,2711,2729,2731,2749

%N Primes represented by the indefinite quadratic form x^2 + 13xy - 9y^2.

%C Discriminant 205.

%C Comment from _Noam D. Elkies_, Jun 14 2014 (See the MathOverflow #171807 link): These are exactly the primes p such that the polynomial x^8+15x^6+48x^4+15x^2+1 factors into linear factors mod p.

%C 4*a(n) has the form z^2 - 205*y^2, where z = 2*x+13*y. - _Bruno Berselli_, Jun 20 2014

%H Will Jagy et al.,<a href="http://mathoverflow.net/questions/171807/positive-primes-represented-by-indefinite-binary-quadratic-form">Positive primes represented by indefinite binary quadratic form"</a>, MathOverflow # 171807, 2014.

%H Will Jagy et al., <a href="http://mathoverflow.net/questions/171846/positive-primes-represented-by-an-indefinite-binary-form-reducing-poly-degree-f">Positive Primes represented by an indefinite binary form, reducing poly degree from 8 to 4</a>, MathOverflow # 171846, 2014.

%H Peter Luschny, <a href="https://github.com/PeterLuschny/BinaryQuadraticForms">Binary Quadratic Forms</a>, GitHub 2024.

%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)

%o (PARI)

%o fc(a,b,c,M) = {

%o my(t1=List(),t2);

%o forprime(p=2,prime(M),

%o t2 = qfbsolve(Qfb(a,b,c),p);

%o if(t2 != 0, listput(t1,p))

%o );

%o Vec(t1)

%o };

%o fc(1,13,-9,600)

%o (SageMath)

%o load('https://raw.githubusercontent.com/PeterLuschny/BinaryQuadraticForms/main/BinaryQF.sage')

%o Q = binaryQF([1, 13, -9])

%o print(Q.represented_positives(2750, 'prime')) # _Peter Luschny_, May 04 2024

%Y This sequence (primes), A243702 (all), A372518 (primitively).

%K nonn

%O 1,1

%A _N. J. A. Sloane_, Jun 17 2014