Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Jun 08 2014 17:19:52
%S 0,1,4,9,11,12,15,16,20,25,27,36,44,45,47,48,49,53,60,64,69,75,80,81,
%T 92,93,99,100,103,108,111,115,121,124,125,132,135,144,148,155,163,165,
%U 169,176,177,180,185,188,192,196,199,201,207,212,213,220,225,236,240,243,256,257,267,268,269,275
%N Nonnegative integers of the form x^2+11y^2.
%C Discriminant -44.
%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%p fd:=proc(a,b,c,M) local dd,xlim,ylim,x,y,t1,t2,t3,t4,i;
%p dd:=4*a*c-b^2;
%p if dd<=0 then error "Form should be positive definite."; break; fi;
%p t1:={};
%p xlim:=ceil( sqrt(M/a)*(1+abs(b)/sqrt(dd)));
%p ylim:=ceil( 2*sqrt(a*M/dd));
%p for x from 0 to xlim do
%p for y from -ylim to ylim do
%p t2 := a*x^2+b*x*y+c*y^2;
%p if t2 <= M then t1:={op(t1),t2}; fi; od: od:
%p t3:=sort(convert(t1,list));
%p t4:=[];
%p for i from 1 to nops(t3) do
%p if isprime(t3[i]) then t4:=[op(t4),t3[i]]; fi; od:
%p [[seq(t3[i],i=1..nops(t3))], [seq(t4[i],i=1..nops(t4))]];
%p end;
%p fd(1,0,11,500);
%Y Primes: A033209.
%K nonn
%O 0,3
%A _N. J. A. Sloane_, Jun 08 2014