login
A243638
Number of length n+2 0..7 arrays with no three unequal elements in a row and new values 0..7 introduced in 0..7 order.
1
4, 9, 21, 51, 127, 324, 844, 2243, 6073, 16737, 46905, 133556, 386062, 1132106, 3365610, 10137369, 30919271, 95444507, 298042003, 941032182, 3002839544, 9679707876, 31506186516, 103497873819, 342976360273, 1146003129573
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 13*a(n-1) - 56*a(n-2) + 44*a(n-3) + 305*a(n-4) - 633*a(n-5) - 476*a(n-6) + 1772*a(n-7) + 308*a(n-8) - 2060*a(n-9) - 368*a(n-10) + 864*a(n-11) + 288*a(n-12).
Empirical g.f.: x*(4 - 43*x + 128*x^2 + 106*x^3 - 976*x^4 + 392*x^5 + 2696*x^6 - 1239*x^7 - 3714*x^8 + 363*x^9 + 2016*x^10 + 576*x^11) / ((1 - x)*(1 + x)*(1 - 2*x)*(1 - 3*x)*(1 - 2*x - x^2)*(1 - 2*x - 2*x^2)*(1 - 2*x - 4*x^2)*(1 - 2*x - 6*x^2)). - Colin Barker, Nov 02 2018
EXAMPLE
Some solutions for n=6:
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..0....0....0....0....1....0....0....1....1....1....1....0....1....0....1....0
..1....1....0....1....1....1....1....1....1....1....1....1....1....1....1....1
..0....0....1....1....0....1....1....2....1....0....0....0....2....0....2....0
..1....1....0....1....0....2....1....2....2....0....0....0....2....0....2....1
..0....1....1....1....1....1....0....0....2....1....2....1....2....0....0....0
..0....1....1....2....0....1....1....0....3....0....0....1....2....0....2....0
..0....0....1....1....1....1....0....3....3....0....0....2....2....0....0....1
CROSSREFS
Column 7 of A243641.
Sequence in context: A243635 A243636 A243637 * A243639 A243640 A243634
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jun 08 2014
STATUS
approved