login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243620
Prime numbers whose digital sum equals the number of bits in its binary expansion. No zeros allowed in the decimal expansion.
1
2, 13, 23, 233, 251, 523, 541, 613, 631, 811, 1163, 1181, 1217, 1361, 1433, 1451, 1523, 1613, 1721, 1811, 4153, 4243, 4261, 4423, 4441, 4513, 4621, 5233, 5323, 5413, 5431, 5521, 6133, 6151, 6421, 7213, 7321, 7411, 8231, 9221
OFFSET
1,1
COMMENTS
Subsequence of A243619, which in turn is a subsequence of A243615.
EXAMPLE
613 -> 6+1+3=10, 613 = 1001100101_2 (10 bits), so 613 is a term.
MATHEMATICA
Select[Prime[Range[1200]], DigitCount[#, 10, 0]==0&&IntegerLength[ #, 2] == Total[ IntegerDigits[#]]&] (* Harvey P. Dale, Jan 12 2019 *)
PROG
(PARI) isok(n) = isprime(n) && (sumdigits(n) == #binary(n)) && (vecmin(digits(n)) != 0); \\ Michel Marcus, Jun 08 2014
CROSSREFS
Cf. A243619 (same principle, but zeros allowed).
Cf. A243615 (same principle, but covers all positive integers).
Sequence in context: A118524 A029971 A243619 * A090526 A362433 A284516
KEYWORD
nonn,base
AUTHOR
Andreas Boe, Jun 07 2014
STATUS
approved