%I #20 May 25 2024 23:47:39
%S 2,6,3,12,7,6,20,13,10,11,30,21,16,15,18,42,31,24,21,22,27,56,43,34,
%T 29,28,31,38,72,57,46,39,36,37,42,51,90,73,60,51,46,45,48,55,66,110,
%U 91,76,65,58,55,56,61,70,83,132
%N Table read by antidiagonals: T(n,k) is the curvature of a circle in a nested Pappus chain (see Comments for details).
%C Refer to sequential curvatures from Wikipedia. For any integer k > 0, there exists an Apollonian gasket defined by the following curvatures:
%C (-k, k+1, k*(k+1), k*(k+1)+1).
%C For example, the gaskets defined by (-1, 2, 2, 3), (-2, 3, 6, 7), (-3, 4, 12, 13), ..., all follow this pattern (all curvatures are integral). Because every interior circle that is defined by k+1 can become the bounding circle (defined by -k) in another gasket, these gaskets can be nested. When one considers only circles that contact both circles -k and k+1, the pattern will be nested Pappus chains. T(n,k) is the curvature when n = 0 is the circle at the center and n > 0 is in the clockwise direction, k >= 1 for each nested iteration. See illustration in links.
%H Kival Ngaokrajang, <a href="/A243618/a243618.pdf">Illustration of initial terms</a>.
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Apollonian_gasket">Apollonian gasket</a>.
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Pappus_chain">Pappus chain</a>.
%e Table begins:
%e n/k 1 2 3 4 5 6 7 ...
%e 0 2 6 12 20 30 42 56 ...
%e 1 3 7 13 21 31 43 57 ...
%e 2 6 10 16 24 34 46 60 ...
%e 3 11 15 21 29 39 51 65 ...
%e 4 18 22 28 36 46 58 72 ...
%e 5 27 31 37 45 55 67 80 ...
%e 6 38 42 48 56 66 78 91 ...
%e 7 51 55 61 68 79 91 105 ...
%e 8 66 70 76 83 94 106 120 ...
%e 9 83 87 93 101 111 123 137 ...
%e .. .. .. .. ... ... ... ...
%o (Small Basic)
%o For k=1 to 50
%o a=-1*(1/k)
%o b=1/(k+1)
%o c=1/(k*(k+1))
%o aa[0][k]=k*(k+1)
%o For n = 1 To 50
%o x=a*b*c
%o y=Math.Power(x*(a+b+c),1/2)
%o r=x/(a*b+a*c+b*c-2*y)
%o aa[n][k]= Math.Round(1/r)
%o c=r
%o EndFor
%o EndFor
%o '=====================================
%o For t = 1 to 20
%o d=0
%o For nn=0 To t-1
%o kk=t-d
%o TextWindow.Write(aa[nn][kk]+", ")
%o d=d+1
%o EndFor
%o Endfor
%Y Cf. Column 1 = A059100(n), column 2 = A114949(n), column 3 = A241748(n), column 4 = A241850(n), column 5 = A114964(n), row 0 = A002378(k), row 1 = A002061(k+1).
%K nonn,tabl
%O 0,1
%A _Kival Ngaokrajang_, Jun 07 2014