Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 May 25 2024 23:47:39
%S 2,6,3,12,7,6,20,13,10,11,30,21,16,15,18,42,31,24,21,22,27,56,43,34,
%T 29,28,31,38,72,57,46,39,36,37,42,51,90,73,60,51,46,45,48,55,66,110,
%U 91,76,65,58,55,56,61,70,83,132
%N Table read by antidiagonals: T(n,k) is the curvature of a circle in a nested Pappus chain (see Comments for details).
%C Refer to sequential curvatures from Wikipedia. For any integer k > 0, there exists an Apollonian gasket defined by the following curvatures:
%C (-k, k+1, k*(k+1), k*(k+1)+1).
%C For example, the gaskets defined by (-1, 2, 2, 3), (-2, 3, 6, 7), (-3, 4, 12, 13), ..., all follow this pattern (all curvatures are integral). Because every interior circle that is defined by k+1 can become the bounding circle (defined by -k) in another gasket, these gaskets can be nested. When one considers only circles that contact both circles -k and k+1, the pattern will be nested Pappus chains. T(n,k) is the curvature when n = 0 is the circle at the center and n > 0 is in the clockwise direction, k >= 1 for each nested iteration. See illustration in links.
%H Kival Ngaokrajang, <a href="/A243618/a243618.pdf">Illustration of initial terms</a>.
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Apollonian_gasket">Apollonian gasket</a>.
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Pappus_chain">Pappus chain</a>.
%e Table begins:
%e n/k 1 2 3 4 5 6 7 ...
%e 0 2 6 12 20 30 42 56 ...
%e 1 3 7 13 21 31 43 57 ...
%e 2 6 10 16 24 34 46 60 ...
%e 3 11 15 21 29 39 51 65 ...
%e 4 18 22 28 36 46 58 72 ...
%e 5 27 31 37 45 55 67 80 ...
%e 6 38 42 48 56 66 78 91 ...
%e 7 51 55 61 68 79 91 105 ...
%e 8 66 70 76 83 94 106 120 ...
%e 9 83 87 93 101 111 123 137 ...
%e .. .. .. .. ... ... ... ...
%o (Small Basic)
%o For k=1 to 50
%o a=-1*(1/k)
%o b=1/(k+1)
%o c=1/(k*(k+1))
%o aa[0][k]=k*(k+1)
%o For n = 1 To 50
%o x=a*b*c
%o y=Math.Power(x*(a+b+c),1/2)
%o r=x/(a*b+a*c+b*c-2*y)
%o aa[n][k]= Math.Round(1/r)
%o c=r
%o EndFor
%o EndFor
%o '=====================================
%o For t = 1 to 20
%o d=0
%o For nn=0 To t-1
%o kk=t-d
%o TextWindow.Write(aa[nn][kk]+", ")
%o d=d+1
%o EndFor
%o Endfor
%Y Cf. Column 1 = A059100(n), column 2 = A114949(n), column 3 = A241748(n), column 4 = A241850(n), column 5 = A114964(n), row 0 = A002378(k), row 1 = A002061(k+1).
%K nonn,tabl
%O 0,1
%A _Kival Ngaokrajang_, Jun 07 2014