login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243526
Decimal expansion of the variance of the maximum of a size 7 sample from a normal (0,1) distribution.
1
3, 9, 1, 9, 1, 7, 7, 7, 6, 1, 2, 6, 7, 5, 0, 4, 5, 2, 8, 1, 9, 6, 8, 4, 9, 6, 5, 8, 0, 0, 0, 9, 1, 9, 9, 8, 7, 2, 0, 2, 2, 0, 9, 9, 1, 2, 2, 1, 1, 3, 0, 8, 1, 8, 7, 4, 1, 9, 6, 8, 0, 7, 0, 6, 3, 7, 4, 5, 8, 7, 3, 4, 6, 1, 9, 3, 3, 5, 8, 6, 8, 4, 4, 3, 5, 8, 2, 5, 1, 4, 1, 6, 5, 2, 8, 8, 2, 6, 3
OFFSET
0,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.16 Extreme value constants, p. 365.
FORMULA
-((441*(Pi*(Pi - 5*arccsc(sqrt(3))) + 5*integral_(x=0..arccsc(sqrt(3)) )(arcsin(sqrt(3)*sqrt(1/(8 - tan(x)^2))), {x, 0, arccsc(sqrt(3))} ))^2)/(4*Pi^5)) + (35*sqrt(3)*(Pi*(Pi - 4*arccsc(2*sqrt(2/3))) + 2*integral_(x=0..arccsc(2*sqrt(2/3)))(arcsin(sqrt(6)*sqrt(1/(15 - tan(x)^2))), {x, 0, arccsc(2*sqrt(2/3))} )))/(4*Pi^3) + 1
EXAMPLE
0.39191777612675045281968496580009199872...
MATHEMATICA
digits = 99; v[7] = -((441*(Pi*(Pi - 5*ArcCsc[Sqrt[3]]) + 5*NIntegrate[ArcSin[Sqrt[3]*Sqrt[1/(8 - Tan[x]^2)]], {x, 0, ArcCsc[Sqrt[3]]},
WorkingPrecision -> digits + 5])^2)/(4*Pi^5)) + (35*Sqrt[3]*(Pi*(Pi - 4*ArcCsc[2*Sqrt[2/3]]) + 2*NIntegrate[ArcSin[Sqrt[6]*Sqrt[1/(15 - Tan[x]^2)]], {x, 0, ArcCsc[2*Sqrt[2/3]]}, WorkingPrecision -> digits + 5]))/(4*Pi^3) + 1; RealDigits[v[7], 10, digits] // First
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
STATUS
approved