login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerators of the rational convergents to the periodic continued fraction 1/(2 + 1/(7 + 1/(2 + 1/(7 + ...)))).
2

%I #33 Nov 09 2024 06:18:48

%S 1,7,15,112,239,1785,3809,28448,60705,453383,967471,7225680,15418831,

%T 115157497,245733825,1835294272,3916322369,29249550855,62415424079,

%U 466157519408,994730462895,7429270759673,15853271982241,118402174635360,252657621252961,1887005523406087

%N Numerators of the rational convergents to the periodic continued fraction 1/(2 + 1/(7 + 1/(2 + 1/(7 + ...)))).

%C The sequence of convergents to the simple periodic continued fraction 1/(2 + 1/(7 + 1/(2 + 1/(7 + ...)))) begins [0/1, 1/2, 7/15, 15/32, 112/239, 239/510, ...]. The present sequence is the sequence of numerators of the convergents. It is a strong divisibility sequence, that is gcd(a(n),a(m)) = a(gcd(n,m)) for all positive integers n and m. The sequence is closely related to A041111, the Lehmer numbers U_n(sqrt(R),Q)) with parameters R = 14 and Q = -1.

%C See A243469 for the sequence of denominators to the convergents.

%H G. C. Greubel, <a href="/A243470/b243470.txt">Table of n, a(n) for n = 1..1000</a>

%H Peter Bala, <a href="/A243469/a243469_1.pdf">Notes on 2-periodic continued fractions and Lehmer sequences</a>

%H L. Euler, <a href="http://eulerarchive.maa.org/pages/E101.html">Introductio in analysin infinitorum</a>, Vol.1, Chapter 18, section 378. French and German translations.

%H Eric W. Weisstein, <a href="http://mathworld.wolfram.com/LehmerNumber.html">MathWorld: Lehmer Number</a>

%H <a href="/index/Di#divseq">Index to divisibility sequences</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,16,0,-1).

%F Let alpha = ( sqrt(14) + sqrt(18) )/2 and beta = ( sqrt(14) - sqrt(18) )/2 be the roots of the equation x^2 - sqrt(14)*x - 1 = 0. Then a(n) = (alpha^n - beta^n)/(alpha - beta) for n odd, while a(n) = 7*(alpha^n - beta^n)/(alpha^2 - beta^2) for n even.

%F a(2*n + 1) = Product_{k = 1..n} (14 + 4*cos^2(k*Pi/(2*n+1)));

%F a(2*n) = 7*Product_{k = 1..n-1} (14 + 4*cos^2(k*Pi/(2*n))).

%F Recurrence equations: a(0) = 0, a(1) = 1 and for n >= 2, a(2*n) = 7*a(2*n - 1) + a(2*n - 2) and a(2*n + 1) = 2*a(2*n) + a(2*n - 1).

%F Fourth-order recurrence: a(n) = 16*a(n - 2) - a(n - 4) for n >= 5.

%F O.g.f.: x*(1 + 7*x - x^2)/(1 - 16*x^2 + x^4).

%F a(2n-1) = A157456(n), a(2n) = 7*A077412(n-1). - _Ralf Stephan_, Jun 13 2014

%F a(n) = (1/2)*( 7*(1+(-1)^n)*ChebyshevU((n-2)/2, 8) + (1-(-1)^n)*(ChebyshevU((n- 1)/2, 8) - ChebyshevU((n-3)/2, 8)) ). - _G. C. Greubel_, May 21 2022

%t LinearRecurrence[{0,16,0,-1},{1,7,15,112},30] (* _Harvey P. Dale_, Nov 06 2017 *)

%o (PARI) Vec(x*(1+7*x-x^2)/(1-16*x^2+x^4)+O(x^99)) \\ _Charles R Greathouse IV_, Nov 13 2015

%o (Magma) I:=[1,7,15,112]; [n le 4 select I[n] else 16*Self(n-2) -Self(n-4): n in [1..31]]; // _G. C. Greubel_, May 21 2022

%o (SageMath)

%o def b(n): return chebyshev_U(n,8) # b=A077412

%o def A243470(n): return 7*((n-1)%2)*b(n//2 -1) +(n%2)*(b((n-1)//2) -b((n-1)//2 -1))

%o [A243470(n) for n in (1..30)] # _G. C. Greubel_, May 21 2022

%Y Cf. A041111, A077412, A243469.

%K nonn,easy,frac

%O 1,2

%A _Peter Bala_, Jun 06 2014