login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of log'(1/2-sqrt((5*x+2*sqrt(1-4*x)-2)/x)/2).
0

%I #9 Jun 06 2014 15:30:35

%S 1,3,13,63,325,1748,9685,54841,315605,1838610,10811788,64041706,

%T 381525253,2283436938,13718099275,82672421423,499546587317,

%U 3025336228390,18357852413062,111587292429820,679306584310220

%N Expansion of log'(1/2-sqrt((5*x+2*sqrt(1-4*x)-2)/x)/2).

%F a(n) = sum(k=0..n, binomial(2*k-1,k)*binomial(2*n,n-k)).

%F a(n) ~ 5^(2*n+1/2) / (sqrt(3*Pi*n) * 2^(2*n+1)). - _Vaclav Kotesovec_, Jun 06 2014

%t Table[Sum[Binomial[2 i - 1, i] Binomial[2 n, n - i], {i, 0, n}], {n,

%t 0, 20}] (* _Wesley Ivan Hurt_, Jun 06 2014 *)

%o (Maxima)

%o a(n):=sum(binomial(2*k-1,k)*binomial(2*n,n-k),k,0,n);

%K nonn

%O 0,2

%A _Vladimir Kruchinin_, Jun 02 2014