login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of a constant related to the asymptotic expansion of the smallest Lebesgue constant corresponding to an optimal interpolation data set.
2

%I #13 Sep 08 2022 08:46:08

%S 5,2,1,2,5,1,6,2,6,4,5,5,4,0,9,8,2,1,0,0,5,2,1,9,2,0,4,1,2,7,1,7,8,3,

%T 0,1,8,0,1,8,6,2,0,3,8,9,6,3,9,7,5,6,3,0,4,5,2,0,6,3,3,3,1,1,0,5,1,4,

%U 1,9,9,2,0,7,7,7,9,2,7,0,6,5,6,3,7,3,8,8,6,2,5,2,1,9,4,5,8,4,9,5,9,6,7,8

%N Decimal expansion of a constant related to the asymptotic expansion of the smallest Lebesgue constant corresponding to an optimal interpolation data set.

%D Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 4.2 Lebesgue constants, p. 254.

%H G. C. Greubel, <a href="/A243258/b243258.txt">Table of n, a(n) for n = 0..10000</a>

%H P. Vértesi, <a href="http://dx.doi.org/10.1137/0727075">Optimal Lebesgue constant for Lagrange interpolation</a>, SIAM J. Numer. Anal., 27(5), 1322-1331.

%F Equals 2/Pi*(2*log(2) - log(Pi) + gamma), where gamma is the Euler-Mascheroni constant.

%e 0.5212516264554098210052192041271783...

%t RealDigits[2/Pi*(2*Log[2] - Log[Pi] + EulerGamma), 10, 104] // First

%o (PARI) default(realprecision, 100); (2/Pi)*(2*log(2) - log(Pi) + Euler) \\ _G. C. Greubel_, Sep 04 2018

%o (Magma) SetDefaultRealField(RealField(100)); R:= RealField(); (2/Pi(R))*(2*Log(2) - Log(Pi(R)) + EulerGamma(R)); // _G. C. Greubel_, Sep 04 2018

%Y Cf. A243257, A001620.

%K nonn,cons

%O 0,1

%A _Jean-François Alcover_, Jun 02 2014