login
A243213
Number of ways to place 4 points on a triangular grid of side length n so that no three of them are vertices of an equilateral triangle with sides parallel to the grid.
5
3, 128, 1062, 5160, 18591, 55113, 142005, 329045, 701160, 1395975, 2626953, 4713723, 8120322, 13503350, 21770766, 34153758, 52292385, 78337890, 115072320, 166048850, 235753353, 329791143, 455099307, 620189115, 835418766, 1113301553, 1468849515, 1919958285
OFFSET
3,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (6,-12,2,27,-36,0,36,-27,-2,12,-6,1)
FORMULA
a(n) = (n^8 + 4*n^7 - 6*n^6 - 80*n^5 - 15*n^4 + 532*n^3 - 244*n^2 - 432*n)/384 + IF(MOD(n, 2) = 1)*(-n^2 - n + 12)/16.
G.f.: x^3*(7*x^7-33*x^6-15*x^5-38*x^4-318*x^3-330*x^2-110*x-3) / ((x-1)^9*(x+1)^3). - Colin Barker, Jun 09 2014
EXAMPLE
There are exactly a(3) = 3 ways to place 4 points (x) on a 3X3X3 grid, no three of them being vertices of an equilateral triangle:
. x x
x x . x x .
x . x x x . . x x
PROG
(PARI) Vec(x^3*(7*x^7-33*x^6-15*x^5-38*x^4-318*x^3-330*x^2-110*x-3)/((x-1)^9*(x+1)^3) + O(x^100)) \\ Colin Barker, Jun 09 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Heinrich Ludwig, Jun 09 2014
STATUS
approved