login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243194
Nonnegative integers of the form x^2+xy+10y^2.
2
0, 1, 4, 9, 10, 12, 16, 22, 25, 30, 36, 39, 40, 43, 48, 49, 52, 55, 64, 66, 75, 81, 82, 88, 90, 94, 100, 103, 108, 118, 120, 121, 130, 139, 142, 144, 156, 157, 160, 165, 166, 169, 172, 178, 181, 183, 192, 196, 198, 205, 208, 220, 225, 235, 237, 244, 246, 250, 256, 264, 270, 274, 277, 282, 286, 289
OFFSET
0,3
COMMENTS
Discriminant -39.
LINKS
Jean-François Alcover, Table of n, a(n) for n = 0..1611
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
MAPLE
fd:=proc(a, b, c, M) local dd, xlim, ylim, x, y, t1, t2, t3, t4, i;
dd:=4*a*c-b^2;
if dd<=0 then error "Form should be positive definite."; break; fi;
t1:={};
xlim:=ceil( sqrt(M/a)*(1+abs(b)/sqrt(dd)));
ylim:=ceil( 2*sqrt(a*M/dd));
for x from 0 to xlim do
for y from -ylim to ylim do
t2 := a*x^2+b*x*y+c*y^2;
if t2 <= M then t1:={op(t1), t2}; fi; od: od:
t3:=sort(convert(t1, list));
t4:=[];
for i from 1 to nops(t3) do
if isprime(t3[i]) then t4:=[op(t4), t3[i]]; fi; od:
[[seq(t3[i], i=1..nops(t3))], [seq(t4[i], i=1..nops(t4))]];
end;
fd(1, 1, 10, 500);
MATHEMATICA
Module[{k, r}, Reap[For[k = 0, k <= 1000, k++, r = Reduce[k == x^2 + x y + 10 y^2, {x, y}, Integers]; If[r =!= False, (* Print[k, " ", r]; *) Sow[k]]]][[2, 1]]] (* Jean-François Alcover, Mar 07 2023 *)
CROSSREFS
Primes: A033227.
Sequence in context: A180149 A155879 A172192 * A342393 A283320 A379267
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 08 2014
STATUS
approved