login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Nonnegative integers of the form 2*x^2+5*x*y-5*y^2.
2

%I #35 Dec 16 2024 14:26:51

%S 0,2,5,7,8,13,18,20,28,32,37,45,47,50,52,58,63,67,70,72,73,80,83,97,

%T 98,112,117,122,125,128,130,137,145,148,158,162,163,167,175,180,182,

%U 188,193,197,200,202,203,208,223,227,232,242,245,252,262,268,278,280,288,292,293,305,307,317,320,325,332,333,338,343,353,358,362,370,377,382,383

%N Nonnegative integers of the form 2*x^2+5*x*y-5*y^2.

%C Discriminant 65.

%H Vincenzo Librandi, <a href="/A243171/b243171.txt">Table of n, a(n) for n = 1..1500</a>

%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)

%t Module[{k,r},Reap[For[k=1,k<=100,k++,r=Reduce[k==2*x^2+5*x y-5* y^2,{x,y},Integers];If[r=!=False,(*Print[k," ",r];*)Sow[k]]]][[2,1]]] (* _Vincenzo Librandi_, Nov 16 2024 *)

%t sol[t_]:=Solve[2*x^2+5*x*y-5*y^2==t,{x,y},Integers]; Select[Range[0,385],sol[#]!={}&] (* _Vincenzo Librandi_, Nov 25 2024 *)

%Y Primes in this sequence = A141112.

%K nonn

%O 1,2

%A _N. J. A. Sloane_, Jun 01 2014

%E Missing a(63)=307 inserted by _Vincenzo Librandi_, Dec 08 2024