login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n such that n^2 divides n.n.n where dot "." means concatenation.
3

%I #14 Jan 12 2017 06:33:46

%S 1,3,13,21,37,39,91,1443,3367,9901,157737,333667,999001,3075403,

%T 9226209,14287143,33336667,99990001,1171182883,1224848037,1286294191,

%U 1397863441,1428557143,1469179621,1535254357,1568996211,1753536967,1792076241,1839599913,1891910811

%N Numbers n such that n^2 divides n.n.n where dot "." means concatenation.

%C Number of d-digit solutions for d = 1..100: 2, 5, 0, 3, 0, 3, 2, 3, 0, 39, 0, 2, 0, 106, 0, 3, 3, 2, 0, 441, 4, 14, 0, 5, 0, 15, 2, 283, 0, 23, 0, 61, 0, 24, 21, 4, 0, 22, 0, 240, 0, 34, 0, 96, 3, 30, 0, 6, 16, 281, 0, 216, 0, 22, 5, 3894, 2, 10, 0, 149, 2, 11, 0, 407, 0, 25, 0, 2136, 0, 53983, 0, 12, 1, 29, 11, 1872, 99, 20, 0, 6984, 0, 45, 0, 279, 32, 10, 5, 15928, 0, 213, 24, 791, 0, 20, 14, 44, 0, 713, 12, 89804.

%C Numbers n such that n divides 100^d+10^d+1, where 10^(d-1)<=n<10^d. - _Robert Israel_, Jan 11 2017

%H Hans Havermann, <a href="/A243162/b243162.txt">Table of n, a(n) for n = 1..1366</a>

%e 21^2 divides 212121; 91^2 divides 919191; so both 21 and 91 are in the sequence.

%p Res:= {}:

%p for d from 1 to 15 do

%p Res:= Res union select(t -> t >= 10^(d-1) and t < 10^d,

%p numtheory:-divisors(100^d+10^d+1))

%p od:

%p sort(convert(Res,list)); # _Robert Israel_, Jan 11 2017

%t Do[d=Divisors[100^i+10^i+1];s=Select[d,Length[IntegerDigits[#]]==i&];If[Length[s]>0,Do[Print[s[[j]]],{j,Length[s]}]],{i,42}]

%Y Cf. A147553 (n^2 divides n.n), A147554 (primes in this sequence).

%Y Contains A074992 and A168624.

%K nonn,base

%O 1,2

%A _Hans Havermann_, May 31 2014