The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A243116 a(n) = Sum_{k=0..n} C(n + 2*k, 3*k) * C(3*k, 2*k). 1

%I #33 Mar 13 2022 19:11:20

%S 1,4,28,220,1816,15424,133456,1169872,10354528,92331904,828204928,

%T 7464652672,67547774464,613295870464,5584367987968,50974595472640,

%U 466307503244800,4273832891668480,39237007284226048,360768875975526400,3321625537178669056,30619908430235828224,282578914501599305728

%N a(n) = Sum_{k=0..n} C(n + 2*k, 3*k) * C(3*k, 2*k).

%C Compare to: Sum_{k=0..n} (-1)^k * C(n+2*k,3*k) * C(3*k,2*k) = (-2)^n for n>=0.

%H Michael De Vlieger, <a href="/A243116/b243116.txt">Table of n, a(n) for n = 0..1027</a>

%H Hacène Belbachir and Abdelghani Mehdaoui, <a href="https://lrecits.usthb.dz/6.5.pdf">Diagonal sums in Pascal pyramid (1, 2, r)</a>, Les Annales RECITS (2019) Vol. 6, 45-52.

%F G.f.: Sum_{n>=0} C(3*n, n) * x^n / (1-x)^(3*n+1). - _Paul D. Hanna_, Aug 30 2014

%F G.f.: 1/(1-x) / ( 3 / G(x/(1-x)^3) - 2 ), where G(x) = 1 + x*G(x)^3 is the g.f. of A001764. - _Paul D. Hanna_, Aug 30 2014

%F G.f. satisfies: A(x) = 1 + (4-3*x)*A(x) - (4 - 39*x + 12*x^2 - 4*x^3)*A(x)^3. - _Paul D. Hanna_, Sep 05 2014

%F a(n) = Sum_{k=0..n} A109955(n,k) * A005809(k).

%F a(n) = -(-2)^n + 2*Sum_{k=0..[n/2]} C(n+4*k, 6*k) * C(6*k, 4*k).

%F Recurrence: 2*n*(2*n-1)*(3*n-4)*a(n) = (3*n-2)*(39*n^2 - 65*n + 18)*a(n-1) - 2*(n-1)*(18*n^2 - 33*n + 10)*a(n-2) + 4*(n-2)*(n-1)*(3*n-1)*a(n-3). - _Vaclav Kotesovec_, Aug 21 2014

%F From _Peter Bala_, Mar 11 2022: (Start)

%F a(n) = Sum_{k = 0..floor(n/4)} (-1)^k*binomial(n,k)*binomial(4*n-4*k,3*n).

%F a(n) = [x^n] ( (1 + x)^4 - x^4 )^n. Cf. A122868(n) = [x^n] ( (1 + x)^3 - x^3 )^n.

%F It follows that the Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and positive integers n and k. (End)

%e G.f.: A(x) = 1 + 4*x + 28*x^2 + 220*x^3 + 1816*x^4 + 15424*x^5 +...

%e where

%e A(x) = 1/(1-x) + 3*x/(1-x)^4 + 15*x^2/(1-x)^7 + 84*x^3/(1-x)^10 + 495*x^4/(1-x)^13 + 3003*x^5/(1-x)^16 + 18564*x^6/(1-x)^19 + 116280*x^7/(1-x)^22 + 735471*x^8/(1-x)^25 +...+ C(3*n, n)*x^n/(1-x)^(3*n+1) +...

%e ILLUSTRATION OF TERMS.

%e The sequence A005809(k) = C(3*k, 2*k) begins:

%e [1, 3, 15, 84, 495, 3003, 18564, 116280, 735471, 4686825, ...];

%e the triangle A109955(n,k) = C(n + 2*k, 3*k) begins:

%e 1;

%e 1, 1;

%e 1, 4, 1;

%e 1, 10, 7, 1;

%e 1, 20, 28, 10, 1;

%e 1, 35, 84, 55, 13, 1;

%e 1, 56, 210, 220, 91, 16, 1;

%e 1, 84, 462, 715, 455, 136, 19, 1; ...

%e where a(n) = Sum_{k=0..n} A109955(n,k) * A005809(k):

%e a(1) = 1*1 + 1*3 = 4;

%e a(2) = 1*1 + 4*3 + 1*15 = 28;

%e a(3) = 1*1 + 10*3 + 7*15 + 1*84 = 220;

%e a(4) = 1*1 + 20*3 + 28*15 + 10*84 + 1*495 = 1816; ...

%e compare to: Sum_{k=0..n} (-1)^k * A109955(n,k) * A005809(k) = (-2)^n.

%t Table[Sum[Binomial[n + 2*k, 3*k] * Binomial[3*k, 2*k],{k,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, Aug 21 2014 *)

%o (PARI) {a(n)=sum(k=0,n, binomial(n+2*k,3*k) * binomial(3*k,2*k))}

%o for(n=0,30,print1(a(n),", "))

%o (PARI) {a(n)=-(-2)^n + 2*sum(k=0, n\2, binomial(n+4*k, 6*k) * binomial(6*k, 4*k))}

%o for(n=0, 30, print1(a(n), ", "))

%o (PARI) {a(n)=local(A=1); A=sum(m=0, n, binomial(3*m, m) * x^m/(1-x +x*O(x^n))^(3*m+1)); polcoeff(A, n)}

%o for(n=0, 30, print1(a(n), ", "))

%Y Cf. A109955, A005809.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Aug 20 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 16 17:27 EDT 2024. Contains 372554 sequences. (Running on oeis4.)