login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers generated by a Fibonacci-like sequence in which zeros are suppressed.
9

%I #42 Sep 12 2022 13:07:28

%S 1,1,2,3,5,8,13,21,34,55,89,144,233,377,61,438,499,937,1436,2373,389,

%T 2762,3151,5913,964,6877,7841,14718,22559,37277,59836,97113,156949,

%U 25462,182411,27873,21284,49157,7441,56598,6439,6337,12776,19113,31889,512,3241

%N Numbers generated by a Fibonacci-like sequence in which zeros are suppressed.

%C Let x(1) = 1, x(2) = 1, then begin the sequence x(i) = no-zero(x(i-2) + x(i-1)), where the function no-zero(n) removes all zero digits from n.

%C The sequence behaves like a standard Fibonacci sequence until step 15, where x = no-zero(233 + 377) = no-zero(610) = 61. At step 16, x = 377 + 61 = 438. The sequence then proceeds until step 927, where x = no-zero(224 + 377) = no-zero(601) = 61. Therefore at step 928, x = 377 + 61 = 438 and the sequence repeats.

%H Anthony Sand, <a href="/A243063/b243063.txt">Table of n, a(n) for n = 1..927</a>

%H <a href="/index/Rec#order_912">Index entries for linear recurrences with constant coefficients</a>, order 912.

%F x(i) = no-zero(x(i-2) + x(i-1)). For example, no-zero(233 + 377) = no-zero(610) = 61.

%e x(3) = x(1) + x(2) = 1 + 1 = 2.

%e x(4) = x(2) + x(3) = 1 + 2 = 3.

%e x(15) = no-zero(x(13) + x(14)) = no-zero(233 + 377) = no-zero(610) = 61.

%e x(16) = 377 + 61 = 438.

%p noz:=proc(n) local a,t1,i,j; a:=0; t1:=convert(n,base,10); for i from 1 to nops(t1) do j:=t1[nops(t1)+1-i]; if j <> 0 then a := 10*a+j; fi; od: a; end; # A004719

%p t1:=[1,1]; for n from 3 to 100 do t1:=[op(t1),noz(t1[n-1]+t1[n-2])]; od: t1; # _N. J. A. Sloane_, Jun 11 2014

%t Nest[Append[#, FromDigits@ DeleteCases[IntegerDigits[Total@ #[[-2 ;; -1]] ], _?(# == 0 &)]] &, {1, 1}, 45] (* _Michael De Vlieger_, Jun 27 2020 *)

%t nxt[{a_,b_}]:={b,FromDigits[DeleteCases[IntegerDigits[a+b],0]]}; NestList[nxt,{1,1},50][[All,1]] (* _Harvey P. Dale_, Sep 12 2022 *)

%Y Cf. A000045, A004719, A242350, A243657, A243658, A306773.

%K nonn,base

%O 1,3

%A _Anthony Sand_, Jun 09 2014